Flow karyotyping of wheat-Aegilops additions facilitate dissecting the genomes of Ae. biuncialis and Ae. geniculata into individual chromosomes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36262648
PubMed Central
PMC9575658
DOI
10.3389/fpls.2022.1017958
Knihovny.cz E-zdroje
- Klíčová slova
- Aegilops biuncialis, Aegilops geniculata, chromosome flow sorting, flow karyotyping, genome dissecting,
- Publikační typ
- časopisecké články MeSH
Breeding of wheat adapted to new climatic conditions and resistant to diseases and pests is hindered by a limited gene pool due to domestication and thousands of years of human selection. Annual goatgrasses (Aegilops spp.) with M and U genomes are potential sources of the missing genes and alleles. Development of alien introgression lines of wheat may be facilitated by the knowledge of DNA sequences of Aegilops chromosomes. As the Aegilops genomes are complex, sequencing relevant Aegilops chromosomes purified by flow cytometric sorting offers an attractive route forward. The present study extends the potential of chromosome genomics to allotetraploid Ae. biuncialis and Ae. geniculata by dissecting their M and U genomes into individual chromosomes. Hybridization of FITC-conjugated GAA oligonucleotide probe to chromosomes suspensions of the two species allowed the application of bivariate flow karyotyping and sorting some individual chromosomes. Bivariate flow karyotype FITC vs. DAPI of Ae. biuncialis consisted of nine chromosome-populations, but their chromosome content determined by microscopic analysis of flow sorted chromosomes indicated that only 7Mb and 1Ub could be sorted at high purity. In the case of Ae. geniculata, fourteen chromosome-populations were discriminated, allowing the separation of nine individual chromosomes (1Mg, 3Mg, 5Mg, 6Mg, 7Mg, 1Ug, 3Ug, 6Ug, and 7Ug) out of the 14. To sort the remaining chromosomes, a partial set of wheat-Ae. biuncialis and a whole set of wheat-Ae. geniculata chromosome addition lines were also flow karyotyped, revealing clear separation of the GAA-rich Aegilops chromosomes from the GAA-poor A- and D-genome chromosomes of wheat. All of the alien chromosomes represented by individual addition lines could be isolated at purities ranging from 74.5% to 96.6% and from 87.8% to 97.7%, respectively. Differences in flow karyotypes between Ae. biuncialis and Ae. geniculata were analyzed and discussed. Chromosome-specific genomic resources will facilitate gene cloning and the development of molecular tools to support alien introgression breeding of wheat.
Field Crops Research Institute Agricultural Research Centre Cairo Egypt
Wheat Genetics Resource Center Kansas State University Manhattan KS United States
Zobrazit více v PubMed
Abdolmalaki Z., Mirzaghaderi G., Mason A. S., Badaeva E. D. (2019). Molecular cytogenetic analysis reveals evolutionary relationships between polyploid Aegilops species. Plant Syst. Evol. 305, 459–475. doi: 10.1007/s00606-019-01585-3 DOI
Akpinar B. A., Yuce M., Lucas S., Vrána J., Burešová V., Doležel J., et al. . (2015). Molecular organization and comparative analysis of chromosome 5B of the wild wheat ancestor Triticum dicoccoides. Sci. Rep. 5, 10763. doi: 10.1038/srep10763 PubMed DOI PMC
Arrigo N., Felber F., Parisod C., Buerki S., Alvarez N., David J., et al. . (2010). Origin and expansion of the allotetraploid Aegilops geniculata, a wild relative of wheat. New Phytol. 187, 1170–1180. doi: 10.1111/j.1469-8137.2010.03328.x PubMed DOI
Badaeva E. D., Amosova A. V., Samatadze T. E., Zoshchuk S. A., Shostak N. G., Chikida N. N., et al. . (2004). Genome differentiation in Aegilops. 4. evolution of the U-genome cluster. Plant Syst. Evol. 246, 45–76. doi: 10.1007/s00606-003-0072-4 DOI
Bansal M., Adamski N. M., Toor P. I., Kaur S., Molnár I., Holušová K., et al. . (2020). Aegilops umbellulata introgression carrying leaf rust and stripe rust resistance genes Lr76 and Yr70 located to 9.47-Mb region on 5DS telomeric end through a combination of chromosome sorting and sequencing. Theor. Appl. Genet. 133, 903–915. doi: 10.1007/s00122-019-03514-x PubMed DOI
Bedbrook J. R., Jones J., O’Dell M., Thompson R. D., Flavell R. B. (1980). A molecular description of telomeric heterochromatin in Secale species. Cell 19, 545–560. doi: 10.1016/0092-8674(80)90529-2 PubMed DOI
Bennett M. D., Leitch I. J. (2011). Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann. Bot. 107, 467–590. doi: 10.1093/aob/mcq258 PubMed DOI PMC
Cifuentes M., Benavente E. (2009). Wheat-alien metaphase I pairing of individual wheat genomes and D genome chromosomes in interspecific hybrids between Triticum Aestivum l. and Aegilops geniculata Roth. Theor. Appl. Genet. 119, 805–813. doi: 10.1007/s00122-009-1090-6 PubMed DOI
Cifuentes M., Blein M., Benavente E. (2006). A cytomolecular approach to assess the potential of gene transfer from a crop (Triticum turgidum l.) to a wild relative (Aegilops geniculata roth.). Theor. Appl. Genet. 112, 657–664. doi: 10.1007/s00122-005-0168-z PubMed DOI
Darko E., Khalil R., Dobi Z., Kovács V., Szalai G., Janda T., et al. . (2020). Addition of Aegilops biuncialis chromosomes 2M or 3M improves the salt tolerance of wheat in different way. Sci. Rep. 10, 22327. doi: 10.1038/s41598-020-79372-1 PubMed DOI PMC
Doležel J., Kubaláková M., Paux E., Bartoš J., Feuillet C. (2007). Chromosome-based genomics in the cereals. Chromosome Res. 15, 51–66. doi: 10.1007/s10577-006-1106-x PubMed DOI
Doležel J., Lucretti S. (1995). High-resolution flow karyotyping and chromosome sorting in Vicia faba lines with standard and reconstructed karyotypes. Theor. Appl. Genet. 90, 797–802. doi: 10.1007/BF00222014 PubMed DOI
Doležel J., Lucretti S., Molnár I., Cápal P., Giorgi D. (2021). Chromosome analysis and sorting. Cytometry Part A 99, 328–342. doi: 10.1002/cyto.a.24324 PubMed DOI PMC
Doležel J., Vrána J., Cápal P., Kubaláková M., Burešová V., Šimková H. (2014). Advances in plant chromosome genomics. Biotechnol. Adv. 32, 122–136. doi: 10.1016/j.biotechadv.2013.12.011 PubMed DOI
Doležel J., Vrána J., Safář J., Bartoš J., Kubaláková M., Šimková H. (2012). Chromosomes in the flow to simplify genome analysis. Funct. Integr. Genomics 12, 397–416. doi: 10.1007/s10142-012-0293-0 PubMed DOI PMC
Dulai S., Molnár I., Szopkó D., Darkó É., Vojtkó A., Sass-Gyarmati A., et al. . (2014). Wheat-Aegilops biuncialis Amphiploids have efficient photosynthesis and biomass production during osmotic stress. J. Plant Physiol. 171, 509–517. doi: 10.1016/j.jplph.2013.11.015 PubMed DOI
Eilam T., Anikster Y., Millet E., Manisterski J., Feldman M. (2008). Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum. Genome 51, 616–627. doi: 10.1139/G08-043 PubMed DOI
Ekmekci Y., Terzioglu S. (2002). Changes in the electrophoretic pattern of soluble shoot proteins of wild and cultivated tetraploid wheats following cold acclimation and freezing. Israel J. Plant Sci. 50, 95–102. doi: 10.1560/DXB5-VHCC-LQCF-PUM4 DOI
Farkas A., Molnár I., Dulai S., Rapi S., Oldal V., Cseh A., et al. . (2014). Increased micronutrient content (Zn, Mn) in the 3Mb(4B) wheat – Aegilops biuncialis substitution and 3Mb.4BS translocation identified by GISH and FISH. Genome 57, 61–67. doi: 10.1139/gen-2013-0204 PubMed DOI
Feldman M., Levy A. A. (2015)“Origin and evolution of wheat and related Triticeae species,”. In: Alien introgression in wheat: Cytogenetics, molecular biology, and genomics (Cham: Springer International Publishing; ). doi: 10.1007/978-3-319-23494-6_2 (Accessed January 30, 2019). DOI
Feuillet C., Langridge P., Waugh R. (2008). Cereal breeding takes a walk on the wild side. Trends Genet. 24, 24–32. doi: 10.1016/j.tig.2007.11.001 PubMed DOI
Friebe B., Jiang J., Raupp W. J., McIntosh R. A., Gill B. S. (1996). Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica 91, 59–87. doi: 10.1007/bf00035277 DOI
Friebe B. R., Tuleen N. A., Gill B. S. (1999). Development and identification of a complete set of Triticum Aestivum - Aegilops geniculata chromosome addition lines. Genome 42, 374–380. doi: 10.1139/g99-011 DOI
Gerlach W. L., Bedbrook J. R. (1979). Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 7, 1869–1885. doi: 10.1093/nar/7.7.1869 PubMed DOI PMC
Gill B. S., Sharma H. C., Raupp W. J., Browder L. E., Hatchett J. H., Harvey T. L., et al. . (1985). Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, hessian fly, and greenbug. Plant Dis. 69, 314–316. doi: 10.1094/PD-69-314 DOI
Giorgi D., Farina A., Grosso V., Gennaro A., Ceoloni C., Lucretti S. (2013). FISHIS: Fluorescence In situ hybridization in suspension and chromosome flow sorting made easy. PloS One 8, e57994. doi: 10.1371/journal.pone.0057994 PubMed DOI PMC
Grosso V., Farina A., Gennaro A., Giorgi D., Lucretti S. (2012). Flow sorting and molecular cytogenetic identification of individual chromosomes of Dasypyrum villosum l. (H. villosa) by a single DNA probe. PloS One 7, e50151. doi: 10.1371/journal.pone.0050151 PubMed DOI PMC
International Barley Genome Sequencing Consortium. Mayer K. F. X., Waugh R., Brown J. W. S., Schulman A., Langridge P., et al. . (2012). A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711–716. doi: 10.1038/nature11543 PubMed DOI
International Wheat Genome Sequencing Consortium (IWGSC) (2014). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum Aestivum) genome. Science 345, 1251788. doi: 10.1126/science.1251788 PubMed DOI
International Wheat Genome Sequencing Consortium (IWGSC) . (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191. doi: 10.1126/science.aar7191 PubMed DOI
Ivanizs L., Marcotuli I., Rakszegi M., Kalapos B., Szőke-Pázsi K., Farkas A., et al. . (2022). Identification of new QTLs for dietary fiber content in Aegilops biuncialis. Int. J. Mol. Sci. 23, 3821. doi: 10.3390/ijms23073821 PubMed DOI PMC
Ivanizs L., Monostori I., Farkas A., Megyeri M., Mikó P., Türkösi E., et al. . (2019). Unlocking the genetic diversity and population structure of a wild gene source of wheat, Aegilops biuncialis vis., and its relationship with the heading time. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.01531 PubMed DOI PMC
Kapustová V., Tulpová Z., Toegelová H., Novák P., Macas J., Karafiátová M., et al. . (2019). The dark matter of large cereal genomes: Long tandem repeats. Int. J. Mol. Sci. 20, 2483. doi: 10.3390/ijms20102483 PubMed DOI PMC
Kilian B., Mammen K., Millet E., Sharma R., Graner A., Salamini F., et al. . (2011)“Aegilops,”. In: Wild crop relatives: Genomic and breeding resources (New York, NY: Spring-Verlag; ). Available at: https://www.academia.edu/19236227/Aegilops (Accessed August 20, 2020).
Kubaláková M., Kovářová P., Suchánková P., Číhalíková J., Bartoš J., Lucretti S., et al. . (2005). Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics 170, 823–829. doi: 10.1534/genetics.104.039180 PubMed DOI PMC
Kubaláková M., Macas J., Doležel J. (1997). Mapping of repeated DNA sequences in plant chromosomes by PRINS and c-PRINS. Theor. Appl. Genet. 94, 758–763. doi: 10.1007/s001220050475 DOI
Kubaláková M., Valárik M., Bartoš J., Vrána J., Číhalíková J., Molnár-Láng M., et al. . (2003). Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46, 893–905. doi: 10.1139/g03-054 PubMed DOI
Kubaláková M., Vrána J., Číhalíková J., Šimková H., Doležel J. (2002). Flow karyotyping and chromosome sorting in bread wheat (Triticum Aestivum l.). Theor. Appl. Genet. 104, 1362–1372. doi: 10.1007/s00122-002-0888-2 PubMed DOI
Kuraparthy V., Sood S., Gill B. S. (2009). Molecular genetic description of the cryptic wheat-Aegilops geniculata introgression carrying rust resistance genes Lr57 and Yr40 using wheat ESTs and synteny with rice. Genome 52, 1025–1036. doi: 10.1139/G09-076 PubMed DOI
Leitch I. J., Hanson L., Lim K. Y., Kovarik A., Chase M. W., Clarkson J. J., et al. . (2008). The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann. Bot. 101, 805–814. doi: 10.1093/aob/mcm326 PubMed DOI PMC
Li G., Zhang T., Yu Z., Wang H., Yang E., Yang Z. (2021). An efficient oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Plant J. 105, 978–993. doi: 10.1111/tpj.15081 PubMed DOI
Lysák M. A., Číhalíková J., Kubaláková M., Šimková H., Künzel G., Doležel J. (1999). Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare l.). Chromosome Res. 7, 431–444. doi: 10.1023/A:1009293628638 PubMed DOI
Marcotuli I., Colasuonno P., Cutillo S., Simeone R., Blanco A., Gadaleta A. (2019). β-glucan content in a panel of Triticum and Aegilops genotypes. Genet. Resour Crop Evol. 66, 897–907. doi: 10.1007/s10722-019-00753-1 DOI
Martis M. M., Zhou R., Haseneyer G., Schmutzer T., Vrána J., Kubaláková M., et al. . (2013). Reticulate evolution of the rye genome. Plant Cell 25, 3685–3698. doi: 10.1105/tpc.113.114553 PubMed DOI PMC
Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S. O., Wicker T., et al. . (2017). A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433. doi: 10.1038/nature22043 PubMed DOI
Mayer K. F. X., Martis M., Hedley P. E., Šimková H., Liu H., Morris J. A., et al. . (2011). Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23, 1249–1263. doi: 10.1105/tpc.110.082537 PubMed DOI PMC
Mayer K. F. X., Taudien S., Martis M., Šimková H., Suchánková P., Gundlach H., et al. . (2009). Gene content and virtual gene order of barley chromosome 1H. Plant Physiol. 151, 496–505. doi: 10.1104/pp.109.142612 PubMed DOI PMC
Molnár I., Cifuentes M., Schneider A., Benavente E., Molnár-Láng M. (2011. a). Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Ann. Bot. 107, 65–76. doi: 10.1093/aob/mcq215 PubMed DOI PMC
Molnár I., Gáspár L., Sárvári É., Dulai S., Hoffmann B., Molnár-Láng M., et al. . (2004). Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum Aestivum genotypes with differing tolerance to drought. Funct. Plant Biol. 31, 1149–1159. doi: 10.1071/FP03143 PubMed DOI
Molnár I., Kubaláková M., Šimková H., Cseh A., Molnár-Láng M. (2011. b). Chromosome isolation by flow sorting in Aegilops umbellulata and Ae. comosa and their allotetraploid hybrids Ae. biuncialis and Ae. geniculata. PloS One 6, e27708. doi: 10.1371/journal.pone.0027708 PubMed DOI PMC
Molnár I., Kubaláková M., Šimková H., Farkas A., Cseh A., Megyeri M., et al. . (2014). Flow cytometric chromosome sorting from diploid progenitors of bread wheat, t. urartu, Ae. speltoides and Ae. tauschii. Theor. Appl. Genet. 127, 1091–1104. doi: 10.1007/s00122-014-2282-2 PubMed DOI
Molnár I., Šimková H., Leverington-Waite M., Goram R., Cseh A., Vrána J., et al. . (2013). Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species brachypodium and rice as revealed by COS markers. PloS One 8, e70844. doi: 10.1371/journal.pone.0070844 PubMed DOI PMC
Molnár I., Vrána J., Burešová V., Cápal P., Farkas A., Darkó É., et al. . (2016). Dissecting M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J. 88, 452–467. doi: 10.1111/tpj.13266 PubMed DOI
Molnár I., Vrána J., Farkas A., Kubaláková M., Cseh A., Molnár-Láng M., et al. . (2015). Flow sorting of C-genome chromosomes from wild relatives of wheat Aegilops markgrafii, Ae. triuncialis and Ae. cylindrica, and their molecular organization. Ann. Bot. 116, 189–200. doi: 10.1093/aob/mcv073 PubMed DOI PMC
Nagaki K., Tsujimoto H., Isono K., Sasakuma T. (1995). Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. Genome 38, 479–486. doi: 10.1139/g95-063 PubMed DOI
Ochoa V., Madrid E., Said M., Rubiales D., Cabrera A. (2015). Molecular and cytogenetic characterization of a common wheat-Agropyron cristatum chromosome translocation conferring resistance to leaf rust. Euphytica 201, 89–95. doi: 10.1007/s10681-014-1190-5 DOI
Olivera P. D., Rouse M. N., Jin Y. (2018). Identification of new sources of resistance to wheat stem rust in Aegilops spp. in the tertiary genepool of wheat. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.01719 PubMed DOI PMC
Ozkan H., Tuna M., Arumuganathan K. (2003). Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) group. J. Heredity 94, 260–264. doi: 10.1093/jhered/esg053 PubMed DOI
Pradhan G. P., Prasad P. V. V., Fritz A. K., Kirkham M. B., Gill B.S. (2012). Response of Aegilops species to drought stress during reproductive stages of development. Funct. Plant Biol. 39, 51–59. doi: 10.1071/FP11171 PubMed DOI
Qi L., Friebe B., Zhang P., Gill B. S. (2007). Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res. 15, 3–19. doi: 10.1007/s10577-006-1108-8 PubMed DOI
Rakszegi M., Molnár I., Lovegrove A., Darkó É., Farkas A., Láng L., et al. . (2017). Addition of Aegilops U and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.01529 PubMed DOI PMC
Šafář J., Bartoš J., Janda J., Bellec A., Kubaláková M., Valárik M., et al. . (2004). Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J. 39, 960–968. doi: 10.1111/j.1365-313X.2004.02179.x PubMed DOI
Said M., Holušová K., Farkas A., Ivanizs L., Gaál E., Cápal P., et al. . (2021). Development of DNA markers from physically mapped loci in Aegilops comosa and Aegilops umbellulata using single-gene FISH and chromosome sequences. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.689031 PubMed DOI PMC
Said M., Hřibová E., Danilova T. V., Karafiátová M., Čížková J., Friebe B., et al. . (2018). The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theor. Appl. Genet. 131, 2213–2227. doi: 10.1007/s00122-018-3148-9 PubMed DOI PMC
Said M., Kubaláková M., Karafiátová M., Molnár I., Doležel J., Vrána J. (2019. a). Dissecting the complex genome of crested wheatgrass by chromosome flow sorting. Plant Genome 12, 180096. doi: 10.3835/plantgenome2018.12.0096 PubMed DOI
Said M., Parada A. C., Gaál E., Molnár I., Cabrera A., Doležel J., et al. . (2019. b). Uncovering homeologous relationships between tetraploid Agropyron cristatum and bread wheat genomes using COS markers. Theor. Appl. Genet. 132, 2881–2898. doi: 10.1007/s00122-019-03394-1 PubMed DOI PMC
Sánchez-Martín J., Steuernagel B., Ghosh S., Herren G., Hurni S., Adamski N., et al. . (2016). Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 17, 221. doi: 10.1186/s13059-016-1082-1 PubMed DOI PMC
Schneider A., Linc G., Molnár I., Molnár-Láng M. (2005). Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat-Aegilops biuncialis disomic addition lines. Genome 48, 1070–1082. doi: 10.1139/g05-062 PubMed DOI
Schneider A., Molnár-Láng M. (2009). Detection of the 1RS chromosome arm in martonvásár wheat genotypes containing 1Bl.1Rs or 1Al.1Rs translocations using SSR and STS markers. Acta Agronomica. Hungarica. 57, 409–416. doi: 10.1556/AAgr.57.2009.4.3 DOI
Schneider A., Molnár I., Molnár-Láng M. (2008). Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163, 1–19. doi: 10.1007/s10681-007-9624-y DOI
Senerchia N., Felber F., Parisod C. (2014). Contrasting evolutionary trajectories of multiple retrotransposons following independent allopolyploidy in wild wheats. New Phytol. 202, 975–985. doi: 10.1111/nph.12731 PubMed DOI
Šimková H., Šafář J., Suchánková P., Kovářová P., Bartoš J., Kubaláková M., et al. . (2008. a). A novel resource for genomics of Triticeae: BAC library specific for the short arm of rye (Secale cereale l.) chromosome 1R (1RS). BMC Genomics 9, 237. doi: 10.1186/1471-2164-9-237 PubMed DOI PMC
Šimková H., Svensson J. T., Condamine P., Hřibová E., Suchánková P., Bhat P. R., et al. . (2008. b). Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9, 294. doi: 10.1186/1471-2164-9-294 PubMed DOI PMC
Staňková H., Hastie A. R., Chan S., Vrána J., Tulpová Z., Kubaláková M., et al. . (2016). BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotechnol. J. 14, 1523–1531. doi: 10.1111/pbi.12513 PubMed DOI PMC
Steadham J., Schulden T., Kalia B., Koo D.-H., Gill B. S., Bowden R., et al. . (2021). An approach for high-resolution genetic mapping of distant wild relatives of bread wheat: example of fine mapping of Lr57 and Yr40 genes. Theor. Appl. Genet. 134, 2671–2686. doi: 10.1007/s00122-021-03851-w PubMed DOI
Tanksley S. D., McCouch S. R. (1997). Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277, 1063–1066. doi: 10.1126/science.277.5329.1063 PubMed DOI
Thind A. K., Wicker T., Šimková H., Fossati D., Moullet O., Brabant C., et al. . (2017). Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol. 35, 793–796. doi: 10.1038/nbt.3877 PubMed DOI
Tiwari V. K., Wang S., Danilova T., Koo D. H., Vrána J., Kubaláková M., et al. . (2015). Exploring the tertiary gene pool of bread wheat: Sequence assembly and analysis of chromosome 5Mg of Aegilops geniculata. Plant J. 84, 733–746. doi: 10.1111/tpj.13036 PubMed DOI
Tiwari V. K., Wang S., Sehgal S., Vrána J., Friebe B., Kubaláková M., et al. . (2014). SNP discovery for mapping alien introgressions in wheat. BMC Genomics 15, 273. doi: 10.1186/1471-2164-15-273 PubMed DOI PMC
van Slageren M. W. S. J. M. (1994). Wild wheats: a monograph of Aegilops l. and Amblyopyrum (Jaub. & spach) eig (Poaceae): a revision of all taxa closely related to wheat, excluding wild Triticum species, with notes on other genera in the tribe Triticcae, especially Triticum (Wageningen, The Netherlands; Aleppo, Syria: Wageningen Agricultural University; International Center for Agricultural Research in the Dry Areas; ).
Vrána J., Cápal P., Číhalíková J., Kubaláková M., Doležel J. (2016. a). Flow sorting plant chromosomes. Methods Mol. Biol. 1429, 119–134. doi: 10.1007/978-1-4939-3622-9_10 PubMed DOI
Vrána J., Cápal P., Šimková H., Karafiátová M., Čížková J., Doležel J. (2016. b). Flow analysis and sorting of plant chromosomes. Curr. Protoc. Cytometry 78, 5.3.1–5.3.43. doi: 10.1002/cpcy.9 PubMed DOI
Vrána J., Kubaláková M., Číhalíková J., Valárik M., Doležel J. (2015). Preparation of sub-genomic fractions enriched for particular chromosomes in polyploid wheat. Biol. Plant 59, 445–455. doi: 10.1007/s10535-015-0522-1 DOI
Vrána J., Kubaláková M., Šimková H., Číhalíková J., Lysák M. A., Doležel J. (2000). Flow sorting of mitotic chromosomes in common wheat (Triticum Aestivum l.). Genetics 156, 2033–2041. doi: 10.1093/genetics/156.4.2033 PubMed DOI PMC
Xing L., Hu P., Liu J., Witek K., Zhou S., Xu J., et al. . (2018). Pm21 from haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol. Plant 11, 874–878. doi: 10.1016/j.molp.2018.02.013 PubMed DOI
Xing L., Yuan L., Lv Z., Wang Q., Yin C., Huang Z., et al. . (2021). Long-range assembly of sequences helps to unravel the genome structure and small variation of the wheat–Haynaldia villosa translocated chromosome 6VS.6AL. Plant Biotechnol. J. 19, 1567–1578. doi: 10.1111/pbi.13570 PubMed DOI PMC
Yu G., Matny O., Champouret N., Steuernagel B., Moscou M. J., Hernández-Pinzón I., et al. . (2022). Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat. Commun. 13, 1607. doi: 10.1038/s41467-022-29132-8 PubMed DOI PMC
Zhang Z., Song L., Han H., Zhou S., Zhang J., Yang X., et al. . (2017). Physical localization of a locus from Agropyron cristatum conferring resistance to stripe rust in common wheat. Int. J. Mol. Sci. 18, 2403. doi: 10.3390/ijms18112403 PubMed DOI PMC
Zwyrtková J., Blavet N., Doležalová A., Cápal P., Said M., Molnár I., et al. . (2022). Draft sequencing crested wheatgrass chromosomes identified evolutionary structural changes and genes and facilitated the development of SSR markers. Int. J. Mol. Sci. 23, 3191. doi: 10.3390/ijms23063191 PubMed DOI PMC
Zwyrtková J., Šimková H., Doležel J. (2021). Chromosome genomics uncovers plant genome organization and function. Biotechnol. Adv. 46, 107659. doi: 10.1016/j.biotechadv.2020.107659 PubMed DOI