Immunotherapy represents a revolutionary advancement in cancer treatment, which has traditionally focused on T cells; however, the role of B cells in cancer immunotherapy has gained interest because of their role in antigen presentation, antibody production, and cytokine release. In this study, we examined the role of B cells in previously developed intratumoral MBTA therapy (mannan-BAM, TLR ligands, and anti-CD40 antibody) in murine models of MTT pheochromocytoma. The results indicated that B cells significantly enhance the success of MBTA therapy, with wild-type mice exhibiting a lower tumor incidence and smaller tumors compared with B cell-deficient mice. Increased IL-6 and TNF-alpha levels indicated severe inflammation and a potential cytokine storm in B cell-deficient mice. Neutralization of TNF-alpha ameliorated these complications but resulted in increased tumor recurrence. The results highlight the important role of B cells in enhancing the immune response and maintaining immune homeostasis during MBTA therapy. Our findings offer new insights into improving therapeutic outcomes.
- MeSH
- B-lymfocyty * imunologie MeSH
- feochromocytom * imunologie terapie MeSH
- imunoterapie * metody MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádory nadledvin * imunologie terapie MeSH
- TNF-alfa MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Intramural MeSH
BACKGROUND: This study develops a deep learning-based automated lesion segmentation model for whole-body 3D18F-fluorodeoxyglucose (FDG)-Position emission tomography (PET) with computed tomography (CT) images agnostic to disease location and site. METHOD: A publicly available lesion-annotated dataset of 1014 whole-body FDG-PET/CT images was used to train, validate, and test (70:10:20) eight configurations with 3D U-Net as the backbone architecture. The best-performing model on the test set was further evaluated on 3 different unseen cohorts consisting of osteosarcoma or neuroblastoma (OS cohort) (n = 13), pediatric solid tumors (ST cohort) (n = 14), and adult Pheochromocytoma/Paraganglioma (PHEO cohort) (n = 40). Both lesion-level and patient-level statistical analyses were conducted to validate the performance of the model on different cohorts. RESULTS: The best performing 3D full resolution nnUNet model achieved a lesion-level sensitivity and DISC of 71.70 % and 0.40 for the test set, 97.83 % and 0.73 for ST, 40.15 % and 0.36 for OS, and 78.37 % and 0.50 for the PHEO cohort. For the test set and PHEO cohort, the model has missed small volume and lower uptake lesions (p < 0.01), whereas no statistically significant differences (p > 0.05) were found in the false positive (FP) and false negative lesions volume and uptake for the OS and ST cohort. The predicted total lesion glycolysis is slightly higher than the ground truth because of FP calls, which experts can easily check and reject. CONCLUSION: The developed deep learning-based automated lesion segmentation AI model which utilizes 3D_FullRes configuration of the nnUNet framework showed promising and reliable performance for the whole-body FDG-PET/CT images.
- MeSH
- celotělové zobrazování * metody MeSH
- deep learning * MeSH
- dítě MeSH
- dospělí MeSH
- fluorodeoxyglukosa F18 * MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- nádory * diagnostické zobrazování MeSH
- PET/CT * metody MeSH
- počítačové zpracování obrazu * metody MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
The mechanisms governing the abscopal effects of local radiotherapy in cancer patients remain an open conundrum. Here, we show that off-target intestinal low-dose irradiation (ILDR) increases the clinical benefits of immune checkpoint inhibitors or chemotherapy in eight retrospective cohorts of cancer patients and in tumor-bearing mice. The abscopal effects of ILDR depend on dosimetry (≥1 and ≤3 Gy) and on the metabolic and immune host-microbiota interaction at baseline allowing CD8+ T cell activation without exhaustion. Various strains of Christensenella minuta selectively boost the anti-cancer efficacy of ILDR and PD-L1 blockade, allowing emigration of intestinal PD-L1-expressing dendritic cells to tumor-draining lymph nodes. An interventional phase 2 study provides the proof-of-concept that ILDR can circumvent resistance to first- or second-line immunotherapy in cancer patients. Prospective clinical trials are warranted to define optimal dosimetry and indications for ILDR to maximize its therapeutic potential.
- MeSH
- antigeny CD274 * antagonisté a inhibitory metabolismus imunologie MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- imunoterapie metody MeSH
- inhibitory kontrolních bodů * farmakologie terapeutické užití MeSH
- lidé středního věku MeSH
- lidé MeSH
- metastázy nádorů MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádory imunologie radioterapie terapie MeSH
- retrospektivní studie MeSH
- senioři MeSH
- střeva patologie účinky záření MeSH
- střevní mikroflóra MeSH
- zvířata MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- senioři MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Despite enormous progress, advanced cancers are still one of the most serious medical problems in current society. Although various agents and therapeutic strategies with anticancer activity are known and used, they often fail to achieve satisfactory long-term patient outcomes and survival. Recently, immunotherapy has shown success in patients by harnessing important interactions between the immune system and cancer. However, many of these therapies lead to frequent side effects when administered systemically, prompting treatment modifications or discontinuation or, in severe cases, fatalities. New therapeutic approaches like intratumoral immunotherapy, characterized by reduced side effects, cost, and systemic toxicity, offer promising prospects for future applications in clinical oncology. In the context of locally advanced or metastatic cancer, combining diverse immunotherapeutic and other treatment strategies targeting multiple cancer hallmarks appears crucial. Such combination therapies hold promise for improving patient outcomes and survival and for promoting a sustained systemic response. This review aims to provide a current overview of immunotherapeutic approaches, specifically focusing on the intratumoral administration of drugs in patients with locally advanced and metastatic cancers. It also explores the integration of intratumoral administration with other modalities to maximize therapeutic response. Additionally, the review summarizes recent advances in intratumoral immunotherapy and discusses novel therapeutic approaches, outlining future directions in the field.
- MeSH
- imunoterapie * metody MeSH
- kombinovaná terapie MeSH
- lidé MeSH
- metastázy nádorů MeSH
- nádorové mikroprostředí imunologie MeSH
- nádory * terapie imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Activated phosphoinositide 3-kinase delta (PI3Kδ) syndrome (APDS) is an ultra-rare, progressive genetic disease, characterised by immune deficiency and dysregulation, affecting individuals from birth. In a 12-week phase III randomised placebo-controlled trial, leniolisib, a selective PI3Kδ inhibitor, was well-tolerated and met both co-primary endpoints (change from Baseline in log10-transformed sum of product of diameters of index lymph nodes and percentage of naïve/total B cells at Day 85). Here, prespecified subgroup analyses are reported in adolescents aged 12-17 years (leniolisib, n = 8; placebo, n = 4) and adults aged ≥18 (leniolisib, n = 13; placebo, n = 6). In both subgroups, leniolisib reduced lymphadenopathy (least squares mean change versus placebo: adolescents, -0.4 versus -0.1; adults, -0.3 versus 0.1) and increased the percentage of naïve B cells (least squares mean change: adolescents, 44.5 versus -16.5; adults, 28.4 versus -1.1). Leniolisib was well-tolerated in both adolescents and adults. These results show leniolisib is an effective APDS treatment in both subpopulations. PLAIN LANGUAGE SUMMARY: What is activated PI3Kδ syndrome (APDS)? APDS is an ultra-rare disease in which the immune system does not work correctly. People with APDS have a wide range of symptoms, including infections, certain organs associated with the immune system becoming larger, and worse quality of life. These symptoms generally start in childhood. Why was this study carried out? Current treatments only treat the symptoms of APDS, rather than correcting the cause of the problem. These treatments can also have significant side effects. A new medication for APDS called leniolisib aims to treat the underlying cause of the disease. This publication reports results from a clinical trial of leniolisib which compared patients who received leniolisib with patients who received a placebo. The aim of this report was to examine these clinical trial results to understand if leniolisib is effective and safe when treating both adolescents (12-17 years old) and adults (18 years and older) with APDS. What were the results of this study? Leniolisib improved the number of certain immune cells, compared to patients who did not receive leniolisib, in both adolescents and adults with APDS. Leniolisib also reduced the size of the enlarged immune system organs in both adolescents and adults with APDS. There were no major safety concerns for either age group who received leniolisib. What do these results mean? These results show that leniolisib can help the immune system to work in a way that is closer to those without APDS. This new treatment is effective and generally well-tolerated for both adolescents and adults. These results indicate that people with APDS are able to start treatment with leniolisib during adolescence, which may slow the build-up of symptoms and may also have a positive impact on the quality of their lives.
- MeSH
- B-lymfocyty imunologie účinky léků MeSH
- dítě MeSH
- dospělí MeSH
- dvojitá slepá metoda MeSH
- fosfatidylinositol-3-kinasy třídy I * genetika antagonisté a inhibitory MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- primární imunodeficience * farmakoterapie genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze III MeSH
- randomizované kontrolované studie MeSH
The somatostatin (SST) receptor family controls pituitary hormone secretion, but the distribution and specific roles of these receptors on the excitability and voltage-gated calcium signaling of hormone producing pituitary cells have not been fully characterized. Here we show that the rat pituitary gland expressed Sstr1, Sstr2, Sstr3, and Sstr5 receptor genes in a cell type-specific manner: Sstr1 and Sstr2 in thyrotrophs, Sstr3 in gonadotrophs and lactotrophs, Sstr2, Sstr3, and Sstr5 in somatotrophs, and none in corticotrophs and melanotrophs. Most gonadotrophs and thyrotrophs spontaneously fired high-amplitude single action potentials, which were silenced by SST without affecting intracellular calcium concentrations. In contrast, lactotrophs and somatotrophs spontaneously fired low-amplitude plateau-bursting action potentials in conjunction with calcium transients, both of which were silenced by SST. Moreover, SST inhibited GPCR-induced voltage-gated calcium signaling and hormone secretion in all cell types expressing SST receptors, but the inhibition was more pronounced in somatotrophs. The pattern of inhibition of electrical activity and calcium signaling was consistent with both direct and indirect inhibition of voltage-gated calcium channels, the latter being driven by cell type-specific hyperpolarization. These results indicate that the action of SST in somatotrophs is enhanced by the expression of several types of SST receptors and their slow desensitization, that SST may play a role in the electrical resynchronization of gonadotrophs, thyrotrophs, and lactotrophs, and that the lack of SST receptors in corticotrophs and melanotrophs keeps them excitable and ready to responses to stress.
- MeSH
- akční potenciály účinky léků MeSH
- gonadotropní buňky metabolismus účinky léků MeSH
- hypofýza * metabolismus MeSH
- krysa rodu rattus MeSH
- potkani Wistar MeSH
- receptory somatostatinu * metabolismus genetika MeSH
- somatostatin metabolismus MeSH
- vápník metabolismus MeSH
- vápníková signalizace * účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Activated phosphoinositide 3-kinase delta (PI3Kδ) syndrome (APDS; or p110δ-activating mutations causing senescent T cells, lymphadenopathy, and immunodeficiency) is an inborn error of immunity caused by PI3Kδ hyperactivity. Resultant immune deficiency and dysregulation lead to recurrent sinopulmonary infections, herpes viremia, autoimmunity, and lymphoproliferation. OBJECTIVE: Leniolisib, a selective PI3Kδ inhibitor, demonstrated favorable impact on immune cell subsets and lymphoproliferation over placebo in patients with APDS over 12 weeks. Here, we report results from an interim analysis of an ongoing open-label, single-arm extension study. METHODS: Patients with APDS aged 12 years or older who completed NCT02435173 or had previous exposure to PI3Kδ inhibitors were eligible. The primary end point was safety, assessed via investigator-reported adverse events (AEs) and clinical/laboratory evaluations. Secondary and exploratory end points included health-related quality of life, inflammatory markers, frequency of infections, and lymphoproliferation. RESULTS: Between September 2016 and August 2021, 37 patients (median age, 20 years; 42.3% female) were enrolled. Of these 37 patients, 26, 9, and 2 patients had previously received leniolisib, placebo, or other PI3Kδ inhibitors, respectively. At the data cutoff date (December 13, 2021), median leniolisib exposure was 102 weeks. Overall, 32 patients (87%) experienced an AE. Most AEs were grades 1 to 3; none were grade 4. One patient with severe baseline comorbidities experienced a grade 5 AE, determined as unrelated to leniolisib treatment. While on leniolisib, patients had reduced annualized infection rates (P = .004), and reductions in immunoglobulin replacement therapy occurred in 10 of 27 patients. Other observations include reduced lymphadenopathy and splenomegaly, improved cytopenias, and normalized lymphocyte subsets. CONCLUSIONS: Leniolisib was well tolerated and maintained durable outcomes with up to 5 years of exposure in 37 patients with APDS. CLINICALTRIALS: gov identifier: NCT02859727.
- MeSH
- dospělí MeSH
- fosfatidylinositol-3-kinasy třídy I genetika MeSH
- fosfatidylinositol-3-kinasy genetika MeSH
- kvalita života MeSH
- lidé MeSH
- lymfadenopatie * komplikace MeSH
- mladý dospělý MeSH
- mutace MeSH
- syndromy imunologické nedostatečnosti * genetika MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
PIWI-interacting RNAs (piRNAs) play a crucial role in safeguarding genome integrity by silencing mobile genetic elements. From flies to humans, piRNAs originate from long single-stranded precursors encoded by genomic piRNA clusters. How piRNA clusters form to adapt to genomic invaders and evolve to maintain protection remain key outstanding questions. Here, we generate a roadmap of piRNA clusters across seven species that highlights both similarities and variations. In mammals, we identify transcriptional readthrough as a mechanism to generate piRNAs from transposon insertions (piCs) downstream of genes (DoG). Together with the well-known stress-dependent DoG transcripts, our findings suggest a molecular mechanism for the formation of piRNA clusters in response to retroviral invasion. Finally, we identify a class of dynamic piRNA clusters in humans, underscoring unique features of human germ cell biology. Our results advance the understanding of conserved principles and species-specific variations in piRNA biology and provide tools for future studies.
- MeSH
- druhová specificita MeSH
- lidé MeSH
- malá interferující RNA * metabolismus genetika MeSH
- myši MeSH
- Piwi-interagující RNA MeSH
- psi MeSH
- savci * genetika MeSH
- transpozibilní elementy DNA genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
MEDNIK syndrome is a rare autosomal recessive disease characterized by mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratoderma, and caused by variants in the adaptor-related protein complex 1 subunit sigma 1 (AP1S1) gene. This gene encodes the σ1A protein, which is a subunit of the adaptor protein complex 1 (AP-1), a key component of the intracellular protein trafficking machinery. Previous work identified three AP1S1 nonsense, frameshift and splice-site variants in MEDNIK patients predicted to encode truncated σ1A proteins, with consequent AP-1 dysfunction. However, two AP1S1 missense variants (c.269 T > C and c.346G > A) were recently reported in patients who presented with severe enteropathy but no additional symptoms of MEDNIK. This condition was described as a novel non-syndromic form of congenital diarrhea caused specifically by the AP1S1 missense variants. In this study, we report two patients with the same c.269 T > C variant, who, contrary to the previous cases, presented as complete MEDNIK syndrome. These data substantially revise the presentation of disorders associated with AP1S1 gene variants and indicate that all the identified pathogenic AP1S1 variants result in MEDNIK syndrome. We also provide a series of functional analyses that elucidate the impact of the c.269 T > C variant on σ1A function, contributing to a better understanding of the molecular pathogenesis of MEDNIK syndrome. KEY MESSAGES: A missense AP1S1 c.269 T > C (σ1A L90P) variant causes full MEDNIK syndrome. The σ1A L90P variant is largely unable to assemble into the AP-1 complex. The σ1A L90P variant fails to bind [DE]XXXL[LI] sorting motifs. The σ1A L90P variant results in loss-of-function of the protein.
- MeSH
- adaptorový proteinový komplex - sigma-podjednotky * genetika MeSH
- adaptorový proteinový komplex 1 * genetika MeSH
- genetická predispozice k nemoci MeSH
- lidé MeSH
- mentální retardace genetika MeSH
- missense mutace * MeSH
- průjem genetika MeSH
- syndrom MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
In eukaryotes, genes produce a variety of distinct RNA isoforms, each with potentially unique protein products, coding potential or regulatory signals such as poly(A) tail and nucleotide modifications. Assessing the kinetics of RNA isoform metabolism, such as transcription and decay rates, is essential for unraveling gene regulation. However, it is currently impeded by lack of methods that can differentiate between individual isoforms. Here, we introduce RNAkinet, a deep convolutional and recurrent neural network, to detect nascent RNA molecules following metabolic labeling with the nucleoside analog 5-ethynyl uridine and long-read, direct RNA sequencing with nanopores. RNAkinet processes electrical signals from nanopore sequencing directly and distinguishes nascent from pre-existing RNA molecules. Our results show that RNAkinet prediction performance generalizes in various cell types and organisms and can be used to quantify RNA isoform half-lives. RNAkinet is expected to enable the identification of the kinetic parameters of RNA isoforms and to facilitate studies of RNA metabolism and the regulatory elements that influence it.
- Publikační typ
- časopisecké články MeSH