This study develops and characterizes novel biodegradable soft hydrogels with dual porosity based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers cross-linked by hydrolytically degradable linkers. The structure and properties of the hydrogels are designed as scaffolds for tissue engineering and they are tested in vitro with model mesenchymal stem cells (rMSCs). Detailed morphological characterization confirms dual porosity suitable for cell growth and nutrient transport. The dual porosity of hydrogels slightly improves rMSCs proliferation compared to the hydrogel with uniform pores. In addition, the laminin coating supports the adhesion of rMSCs to the hydrogel surface. However, hydrogels modified by heptapeptide RGDSGGY significantly stimulate cell adhesion and growth. Moreover, the RGDS-modified hydrogels also affect the topology of proliferating rMSCs, ranging from single-cell to multicellular clusters. The 3D reconstruction of the hydrogels with cells obtained by laser scanning confocal microscopy (LSCM) confirms cell penetration into the inner structure of the hydrogel and its corresponding microstructure. The prepared biodegradable oligopeptide-modified hydrogels with dual porosity are suitable candidates for further in vivo evaluation in soft tissue regeneration.
The aim of this study was to develop multifunctional magnetic poly(ε-caprolactone) (PCL) mats with antibacterial properties for bone tissue engineering and osteosarcoma prevention. To provide good dispersion of magnetic iron oxide nanoparticles (IONs), they were first grafted with PCL using a novel three-step approach. Then, a series of PCL-based mats containing a fixed amount of ION@PCL particles and an increasing content of ascorbic acid (AA) was prepared by electrospinning. AA is known for increasing osteoblast activity and suppressing osteosarcoma cells. Composites were characterized in terms of morphology, mechanical properties, hydrolytic stability, antibacterial performance, and biocompatibility. AA affected both the fiber diameter and the mechanical properties of the nanocomposites. All produced mats were nontoxic to rat bone marrow-derived mesenchymal cells; however, a composite with 5 wt.% of AA suppressed the initial proliferation of SAOS-2 osteoblast-like cells. Moreover, AA improved antibacterial properties against Staphylococcus aureus and Escherichia coli compared to PCL. Overall, these magnetic composites, reported for the very first time, can be used as scaffolds for both tissue regeneration and osteosarcoma prevention.
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- Escherichia coli účinky léků MeSH
- kosti a kostní tkáň MeSH
- krysa rodu rattus MeSH
- kyselina askorbová * chemie farmakologie MeSH
- lidé MeSH
- magnetické nanočástice chemie MeSH
- nádorové buněčné linie MeSH
- nanokompozity chemie MeSH
- osteoblasty metabolismus cytologie MeSH
- osteosarkom patologie MeSH
- polyestery * chemie MeSH
- Staphylococcus aureus * účinky léků růst a vývoj MeSH
- testování materiálů MeSH
- tkáňové inženýrství * MeSH
- tkáňové podpůrné struktury chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Extracellular vesicles (EVs) are lipid-enclosed structures that facilitate intercellular communication by transferring cargo between cells. Although predominantly studied in mammals, extracellular vesicles are ubiquitous across metazoans, and thus research in non-mammalian models is critical for fully elucidating extracellular vesicles biology. Recent advances demonstrate that extracellular vesicles mediate diverse physiological processes in non-mammalian vertebrates, including fish, amphibians, and reptiles. Piscine extracellular vesicles promote fin regeneration in zebrafish and carry heat shock proteins regulated by stress. Frog extracellular vesicles containing microRNAs modulate angiogenesis, while turtle extracellular vesicles coordinate reproductive functions. Venom from snakes contains extracellular vesicles that mirror the whole venom composition and interact with mammalian cells. Invertebrates also possess extracellular vesicles involved in immunity, development, and pathogenesis. Molluscan extracellular vesicles participate in shell formation and host interactions. Arthropod models, including Drosophila, genetically dissect conserved pathways controlling extracellular vesicles biogenesis and signalling. Nematode extracellular vesicles regulate larval development, animal communication, and ageing via conserved extracellular vesicles proteins. Ancient metazoan lineages utilise extracellular vesicles as well, with cnidarian extracellular vesicles regulating immunity and regeneration. Ultimately, expanding extracellular vesicles research beyond typical biomedical models to encompass phylogenetic diversity provides an unparalleled perspective on the conserved versus specialised aspects of metazoan extracellular vesicles roles over ∼500 million years. With a primary focus on the literature from the past 5 years, this review aims to reveal fundamental insights into EV-mediated intercellular communication mechanisms shaping animal physiology.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Background: Exosomes are extracellular vesicles with the ability to encapsulate bioactive molecules, such as therapeutics. This study identified a new exosome mediated route of doxorubicin and poly(N-(2-hydroxypropyl)methacrylamide) (pHPMA)-bound doxorubicin trafficking in the tumor mass. Materials & methods: Exosome loading was achieved via incubation of the therapeutics with an adherent human breast adenocarcinoma cell line and its derived spheroids. Exosomes were characterized using HPLC, nanoparticle tracking analysis (NTA) and western blotting. Results: The therapeutics were successfully loaded into exosomes. Spheroids secreted significantly more exosomes than adherent cells and showed decreased viability after treatment with therapeutic-loaded exosomes, which confirmed successful transmission. Conclusion: To the best of our knowledge, this study provides the first evidence of pHPMA-drug conjugate secretion by extracellular vesicles.
- MeSH
- adenokarcinom * farmakoterapie MeSH
- doxorubicin farmakologie terapeutické užití MeSH
- exozómy * MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- polymery MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Silver nanoparticles are versatile platforms with a variety of applications in the biomedical field. In this framework, their presence in biological media inevitably leads to the interaction with proteins thus conducting to the formation of biomolecular coronas. This feature alters the identity of the nanomaterial and may affect many biological events. These considerations motivated the investigation of protein adsorption onto the surface of polymer-stabilized AgNPs. The metallic colloids were coated by polyethyleneimine (PEI), polyvinylpyrrolidone (PVP), and poly(2-vinyl pyridine)-b-poly(ethylene oxide) (PEO-b-P2VP), and nanoparticle-protein interaction was probed by using a library of analytical techniques. The experimental data revealed a higher extent of protein adsorption at the surface of AgNPs@PVP whereas PEO-b-P2VP coating conducted to the least amount. The main component of the protein coronas was evidenced to be bovine serum albumin (BSA), which is indeed the protein at the highest abundancy in the model biological media. We have further demonstrated reduced cytotoxicity of the silver colloids coated by biomolecular coronas as compared to the pristine counterparts. Nevertheless, the protein coatings did not notably reduce the antimicrobial performance of the polymer-stabilized AgNPs. Accordingly, although the protein-repelling property is frequently targeted towards longer in vivo circulation of nanoparticles, we herein underline that protein coatings, which are commonly treated as artifacts to be avoided, may indeed enhance the biological performance of nanomaterials. These findings are expected to be highly relevant in the design of polymer-stabilized metallic colloids intended to be used in healthcare.
- MeSH
- antibakteriální látky farmakologie MeSH
- ethylenoxid MeSH
- koloidy MeSH
- kovové nanočástice * MeSH
- polyethylenimin farmakologie MeSH
- polymery farmakologie MeSH
- povidon farmakologie MeSH
- proteinová korona * metabolismus MeSH
- pyridiny MeSH
- sérový albumin hovězí MeSH
- stříbro farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
In this work, levofloxacin (LVX), a third-generation fluoroquinolone antibiotic, is encapsulated within amphiphilic polymeric nanoparticles of a chitosan-g-poly(methyl methacrylate) produced by self-assembly and physically stabilized by ionotropic crosslinking with sodium tripolyphosphate. Non-crosslinked nanoparticles display a size of 29 nm and a zeta-potential of +36 mV, while the crosslinked counterparts display 45 nm and +24 mV, respectively. The cell compatibility, uptake, and intracellular trafficking are characterized in the murine alveolar macrophage cell line MH-S and the human bronchial epithelial cell line BEAS-2B in vitro. Internalization events are detected after 10 min and the uptake is inhibited by several endocytosis inhibitors, indicating the involvement of complex endocytic pathways. In addition, the nanoparticles are detected in the lysosomal compartment. Then, the antibacterial efficacy of LVX-loaded nanoformulations (50% w/w drug content) is assessed in MH-S and BEAS-2B cells infected with Staphylococcus aureus and the bacterial burden is decreased by 49% and 46%, respectively. In contrast, free LVX leads to a decrease of 8% and 5%, respectively, in the same infected cell lines. Finally, intravenous injection to a zebrafish larval model shows that the nanoparticles accumulate in macrophages and endothelium and demonstrate the promise of these amphiphilic nanoparticles to target intracellular infections.
- MeSH
- antibakteriální látky farmakologie MeSH
- chitosan * MeSH
- dánio pruhované MeSH
- lidé MeSH
- makrofágy metabolismus MeSH
- myši MeSH
- nanočástice * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
31 P-magnetic resonance (MR) is an important diagnostic technique currently used for tissue metabolites assessing, but it also has great potential for visualizing the internal body structures. However, due to the low physiological level of phosphorus-containing biomolecules, precise imaging requires the administration of an exogenous probe. Herein, this work describes the synthesis and MR characterization of a pioneering metal-free 31 P-MR probe based on phosphorus-containing polymeric zwitterion. The developed probe (pTMPC) is a well-defined water-soluble macromolecule characterized by a high content of naturally rare phosphorothioate groups providing a high-intensity 31 P-MR signal clearly distinguishable from biological background both in vitro and in vitro. In addition, pTMPC can serve as a sensitive 31 P-MR sensor of pathological conditions in vivo because it undergoes oxidation-induced structural changes in the presence of reactive oxygen species (ROS). Add to this the favorable 1 H and 31 P T1 /T2 relaxation times and biocompatibility, pTMPC represents a conceptually new diagnostic, whose discovery opens up new possibilities in the field of 31 P-MR spectroscopy and imaging.
Long-term delivery of growth factors and immunomodulatory agents is highly required to support the integrity of tissue in engineering constructs, e.g., formation of vasculature, and to minimize immune response in a recipient. However, for proteins with a net positive charge at the physiological pH, controlled delivery from negatively charged alginate (Alg) platforms is challenging due to electrostatic interactions that can hamper the protein release. In order to regulate such interactions between proteins and the Alg matrix, we propose to complex proteins of interest in this study - CXCL12, FGF-2, VEGF - with polyanionic heparin prior to their encapsulation into Alg microbeads of high content of α-L-guluronic acid units (high-G). This strategy effectively reduced protein interactions with Alg (as shown by model ITC and SPR experiments) and, depending on the protein type, afforded control over the protein release for at least one month. The released proteins retained their in vitro bioactivity: CXCL12 stimulated the migration of Jurkat cells, and FGF-2 and VEGF induced proliferation and maturation of HUVECs. The presence of heparin also intensified protein biological efficiency. The proposed approach for encapsulation of proteins with a positive net charge into high-G Alg hydrogels is promising for controlled long-term protein delivery under in vivo conditions.
- MeSH
- algináty chemie MeSH
- chemokin CXCL12 chemie MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- fibroblastový růstový faktor 2 chemie MeSH
- heparin chemie MeSH
- lidé MeSH
- mikrosféry MeSH
- nádorové buněčné linie MeSH
- tkáňové inženýrství MeSH
- vaskulární endoteliální růstový faktor A chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
Research of degradable hydrogel polymeric materials exhibiting high water content and mechanical properties resembling tissues is crucial not only in drug delivery systems but also in tissue engineering, medical devices, and biomedical-healthcare sensors. Therefore, we newly offer development of hydrogels based on poly(2-hydroxyethyl methacrylate-co-2-(acetylthio) ethyl methacrylate-co-2-methacryloyloxyethyl phosphorylcholine) [P(HEMA-ATEMA-MPC)] and optimization of their mechanical and in vitro and in vivo degradability. P(HEMA-ATEMA-MPC) hydrogels differed in chemical composition, degree of crosslinking, and starting molar mass of polymers (15, 19, and 30 kDa). Polymer precursors were synthesized by a reversible addition fragmentation chain transfer (RAFT) polymerization using 2-(acetylthio)ethyl methacrylate containing protected thiol groups, which enabled crosslinking and gel formation. Elastic modulus of hydrogels increased with the degree of crosslinking (Slaughter et al., 2009) [1]. In vitro and in vivo controlled degradation was confirmed using glutathione and subcutaneous implantation of hydrogels in rats, respectively. We proved that the hydrogels with higher degree of crosslinking retarded the degradation. Also, albumin, γ-globulin, and fibrinogen adsorption on P(HEMA-ATEMA-MPC) hydrogel surface was tested, to simulate adsorption in living organism. Rat mesenchymal stromal cell adhesion on hydrogels was improved by the presence of RGDS peptide and laminin on the hydrogels. We found that rat mesenchymal stromal cells proliferated better on laminin-coated hydrogels than on RGDS-modified ones.
Galectin-3 plays a crucial role in cancerogenesis; its targeting is a prospective pathway in cancer diagnostics and therapy. Multivalent presentation of glycans was shown to strongly increase the affinity of glycoconjugates to galectin-3. Further strengthening of interaction with galectin-3 may be accomplished using artificial glycomimetics with apt aryl substitutions. We established a new, as yet undescribed chemoenzymatic method to produce selective C-3-substituted N,N'-diacetyllactosamine glycomimetics and coupled them to human serum albumin. From a library of enzymes, only β-N-acetylhexosaminidase from Talaromyces flavus was able to efficiently synthesize the C-3-propargylated disaccharide. Various aryl residues were attached to the functionalized N,N'-diacetyllactosamine via click chemistry to assess the impact of the aromatic substitution. In ELISA-type assays with galectin-3, free glycomimetics exhibited up to 43-fold stronger inhibitory potency to Gal-3 than the lactose standard. Coupling to human serum albumin afforded multivalent neo-glycoproteins with up to 4209-fold increased inhibitory potency per glycan compared to the monovalent lactose standard. Surface plasmon resonance brought further information on the kinetics of galectin-3 inhibition. The potential of prepared neo-glycoproteins to target galectin-3 was demonstrated on colorectal adenocarcinoma DLD-1 cells. We investigated the uptake of neo-glycoproteins into cells and observed limited non-specific transport into the cytoplasm. Therefore, neo-glycoproteins primarily act as efficient scavengers of exogenous galectin-3 of cancer cells, inhibiting its interaction with the cell surface, and protecting T-lymphocytes against galectin-3-induced apoptosis. The present neo-glycoproteins combine the advantage of a straightforward synthesis, selectivity, non-toxicity, and high efficiency for targeting exogenous galectin-3, with possible application in the immunomodulatory treatment of galectin-3-overexpressing cancers.
- MeSH
- biomimetické materiály chemická syntéza chemie farmakologie MeSH
- galektiny antagonisté a inhibitory genetika metabolismus MeSH
- glykoproteiny chemie metabolismus MeSH
- kinetika MeSH
- krevní proteiny antagonisté a inhibitory genetika metabolismus MeSH
- lidé MeSH
- molekulární struktura MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH