INTRODUCTION: The inflammatory process in Crohn's disease (CD) is closely associated with the formation of reactive oxygen species. Antioxidant enzymes can play an important role in the outcome of CD and may influence postoperative recurrence in these patients. The aim of our study was to evaluate gene expression of intracellular antioxidant enzymes in surgically resected intestinal specimens of patients with CD, both in macroscopically normal and in inflamed tissue. METHODS: A total of 28 patients referred for elective bowel resection were enrolled in the study. Full-thickness small intestinal specimens were investigated. Gene expression of antioxidant enzymes - superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GSR) - was evaluated both in macroscopically normal and inflamed samples. RESULTS: There were significantly lower levels of SOD1 mRNA (p = 0.007) and GSR mRNA (p = 0.027) in inflamed tissue compared to macroscopically normal areas. No significant differences were found between affected and non-affected intestinal segments in mRNA for SOD2, SOD3 and GPX. CONCLUSIONS: Our pilot data clearly showed that the gene expression of major antioxidant enzymes is not a uniform mechanism in the pathogenesis of Crohn's disease. Topically decreased gene expression of SOD1 and GSR might facilitate the segmental tissue injury caused by reactive oxygen species.
- MeSH
- antioxidancia * MeSH
- Crohnova nemoc * genetika metabolismus MeSH
- exprese genu * MeSH
- glutathionperoxidasa genetika MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- reaktivní formy kyslíku MeSH
- střeva MeSH
- superoxid dismutáza 1 * genetika metabolismus MeSH
- superoxiddismutasa genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
3-Quinuclidinyl benzilate (QNB) is an anticholinergic compound that affects the nervous system. Its hallucinogenic action has led to its potential utility as an incapacitating warfare agent, and it is listed in Schedule 2 by the Organization for the Prohibition of Chemical Weapons. Although this compound has been known for a long time, limited information is available regarding its metabolism and mass spectrometric data of the metabolites, the information that could facilitate the identification of QNB in case of suspected intoxication. To the best of our knowledge, the analytical methods previously described in the literature are based on outdated procedures, which may result in a significantly lower number of observable metabolites. The aim of this work was to obtain deeper insight into QNB biotransformation using a combination of in vitro and in vivo approach. The development of a suitable method for the separation and detection of metabolites using mass spectrometry together with the identification of reliable diagnostic fragments for the unambiguous identification of QNB metabolites in the different biological matrices are also presented in this work. A screening of rat plasma, urine and tissue homogenates revealed 26 new metabolites related to the cytochrome P450 biotransformation pathway, which involves N-oxidation and hydroxylation(s) followed by O-methylation and O-glucuronosylation within phase II of the metabolism. A study showed that the brain is not metabolically active in the case of QNB and that the metabolites do not cross the blood-brain barrier; thus, the toxicodynamic effects are due to QNB itself. In addition, in vitro experiments performed using isolated human liver microsomes revealed N-oxidation as the principal metabolic pathway in human tissue. In light of current global events, the abuse of QNB by terrorists or para-military groups is a real possibility, and our findings may improve the detection systems used in laboratories involved in postexposure investigations.
- MeSH
- biotransformace MeSH
- chinuklidinylbenzilát MeSH
- hmotnostní spektrometrie MeSH
- krysa rodu rattus MeSH
- mozek * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Hepatocellular carcinoma (HCC) remains a highly prevalent and deadly disease, being among the top causes of cancer-related deaths worldwide. Despite the fact that the liver is the major site of biotransformation, studies on drug metabolizing enzymes in HCC are scarce. It is known that malignant transformation of hepatocytes leads to a significant alteration of their metabolic functions and overall deregulation of gene expression. Advanced stages of the disease are thus frequently associated with liver failure, and severe alteration of drug metabolism. However, the impact of dysregulation of metabolic enzymes on therapeutic efficacy and toxicity in HCC patients is largely unknown. Here we demonstrate a significant down-regulation in European Caucasian patients of cytochromes P450 (CYPs), the major xenobiotic-metabolizing enzymes, in HCC tumour samples as compared to their surrounding non-cancerous (reference) tissue. Moreover, we report for the first time the association of the unique CYP profiles with specific transcriptome changes, and interesting correlations with expression levels of nuclear receptors and with the histological grade of the tumours. Integrated analysis has suggested certain co-expression profiles of CYPs with lncRNAs that need to be further characterized. Patients with large tumours with down-regulated CYPs could be more vulnerable to drug toxicity; on the other hand, such tumours would eliminate drugs more slowly and should be more sensitive to pharmacotherapy (except in the case of pro-drugs where activation is necessary).
- MeSH
- dospělí MeSH
- hepatocelulární karcinom enzymologie patologie MeSH
- hepatocyty metabolismus MeSH
- játra metabolismus MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- metabolická inaktivace genetika MeSH
- nádory jater enzymologie patologie MeSH
- receptory cytoplazmatické a nukleární genetika metabolismus MeSH
- regulace genové exprese enzymů * MeSH
- senioři MeSH
- stanovení celkové genové exprese MeSH
- stupeň nádoru MeSH
- systém (enzymů) cytochromů P-450 genetika MeSH
- transkriptom * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Histone modifications play a key role in the epigenetic regulation of gene transcription in cancer cells. Histone acetylations are regulated by two classes of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs are increased in ovarian carcinomas and they are involved in carcinogenesis and resistance to chemotherapeutic agents. In our study we investigated anticancer effect of HDAC inhibitor sodium butyrate (NaBu) on cisplatin-sensitive and cisplatin-resistant ovarian cell lines A2780 and A2780cis. A2780 and A2780cis were treated with NaBu alone or in combination with cisplatin (CP). NaBu inhibited the growth of both cell lines and enhanced cytotoxic effect of CP. Exposure to NaBu for 24 h induced cell cycle arrest. The expressions of EMT-related genes and proteins were further investigated by qPCR and western blot analysis. Loss of E-cadherin has been shown to be crucial in ovarian cancer development. We found that NaBu dramatically induce expression of E-cadherin gene (CDH1) and protein levels in A2780 and A2780cis. We investigated correlation between transcription and methylation of CDH1gene. Methylation level analysis in 32 CpG sites in CDH1 gene (promoter/exon1 regions) was performed using bisulfite NGS (Next Generation Sequencing). We found that cisplatin-resistant cell line A2780cis cells differ from their cisplatin-sensitive counterparts in the CDH1 methylation. Methylation in A2780cis cells is elevated compared to A2780. However, NaBu-induced expression of CDH1 was not accompanied by CDH1 demethylation. NaBu treatment induced changes in expression of EMT-related genes and proteins. Interestingly E-cadherin zinc finger transcriptional repressor SNAIL1 was upregulated in both cell lines. Mesenchymal marker vimentin was downregulated. Matrix metalloproteases (MMPs) are necessary for pericellular proteolysis and facilitate migration and invasion of tumour cells. NaBu induced mRNA expression of MMPs, mild changes in activities of gelatinases MMP2 and MMP9 were detected. Our data demonstrate that NaBu sensitizes cisplatin-resistant ovarian cancer cells, re-established E-cadherin expression, but it was not able to reverse the EMT phenotype completely.
- MeSH
- antitumorózní látky farmakologie MeSH
- buněčný cyklus účinky léků MeSH
- CD antigeny genetika MeSH
- chemorezistence genetika MeSH
- cisplatina farmakologie MeSH
- epigeneze genetická účinky léků MeSH
- epitelo-mezenchymální tranzice účinky léků genetika MeSH
- genetické markery MeSH
- histonový kód účinky léků MeSH
- inhibitory histondeacetylas farmakologie MeSH
- kadheriny genetika MeSH
- kyselina máselná farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory vaječníků farmakoterapie genetika patologie MeSH
- proliferace buněk účinky léků MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
AIM: To investigate the effect of resveratrol on biliary secretion of cholephilic compounds in healthy and bile duct-obstructed rats. METHODS: Resveratrol (RSV) or saline were administered to rats by daily oral gavage for 28 d after sham operation or reversible bile duct obstruction (BDO). Bile was collected 24 h after the last gavage during an intravenous bolus dose of the Mdr1/Mrp2 substrate azithromycin. Bile acids, glutathione and azithromycin were measured in bile to quantify their level of biliary secretion. Liver expression of enzymes and transporters relevant for bile production and biliary secretion of major bile constituents and drugs were analyzed at the mRNA and protein levels using qRT-PCR and Western blot analysis, respectively. The TR-FRET PXR Competitive Binding Assay kit was used to determine the agonism of RSV at the pregnane X receptor. RESULTS: RSV increased bile flow in sham-operated rats due to increased biliary secretion of bile acids (BA) and glutathione. This effect was accompanied by the induction of the hepatic rate-limiting transporters for bile acids and glutathione, Bsep and Mrp2, respectively. RSV also induced Cyp7a1, an enzyme that is crucial for bile acid synthesis; Mrp4, a transporter important for BA secretion from hepatocytes to blood; and Mdr1, the major apical transporter for xenobiotics. The findings were supported by increased biliary secretion of azithromycin. The TR-FRET PXR competitive binding assay confirmed RSV as a weak agonist of the human nuclear receptor PXR, which is a transcriptional regulator of Mdr1/Mrp2. RSV demonstrated significant hepatoprotective properties against BDO-induced cirrhosis. RSV also reduced bile flow in BDO rats without any corresponding change in the levels of the transporters and enzymes involved in RSV-mediated hepatoprotection. CONCLUSION: Resveratrol administration for 28 d has a distinct effect on bile flow and biliary secretion of cholephilic compounds in healthy and bile duct-obstructed rats.
- MeSH
- ABC transportéry metabolismus MeSH
- antiflogistika nesteroidní farmakologie terapeutické užití MeSH
- antioxidancia farmakologie terapeutické užití MeSH
- aplikace orální MeSH
- azithromycin farmakokinetika MeSH
- cholestáza farmakoterapie etiologie patofyziologie MeSH
- glutathion sekrece MeSH
- hepatocyty účinky léků metabolismus sekrece MeSH
- játra účinky léků metabolismus patofyziologie MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- potkani Wistar MeSH
- steroidní receptory agonisté MeSH
- stilbeny farmakologie terapeutické užití MeSH
- žlučové kyseliny a soli chemie sekrece MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A soluble form of endoglin (sEng) released into the circulation was suggested to be a direct inducer of endothelial dysfunction, inflammation and contributed to the development of hypertension by interfering with TGF-β signaling in cardiovascular pathologies. In the present study, we assessed the hypothesis that high sEng level-induced hypertension via a possible sEng interference with TGF-β signaling pathways may result in inflammatory, structural or fibrotic changes in hearts of Sol-Eng+ mice (mice with high levels of soluble endoglin) fed either chow or high-fat diet. Female Sol-Eng+ mice and their age matched littermates with low plasma levels of sEng were fed either chow or high-fat diet (HFD). Heart samples were subsequently analyzed by histology, qRT-PCR and Western blot analysis. In this study, no differences in myocardial morphology/hypertrophy and possible fibrotic changes between Sol-Eng+ mice and control mice were detected on both chow and HFD. The presence of sEng did not significantly affect the expression of selected members of TGF-β signaling (membrane endoglin, TGFβRII, ALK-5, ALK-1, Id-1, PAI-1 and activated Smad proteins-pSmad 1,5 and pSmad 2,3), inflammation, heart remodeling (PDGFb, Col1A1) and endothelial dysfunction (VCAM-1, ICAM-1) in the hearts of Sol-Eng+ mice compared to control mice on both chow and high-fat diet. High levels of soluble endoglin did not affect microscopic structure (profibrotic and degenerative cardiomyocyte changes), and specific parts of TGF-β signaling, endothelial function and inflammation in the heart of Sol-Eng+ mice fed both chow diet or HFD. However, we cannot rule out a possibility that a long-term chronic exposure (9 months and more) to soluble endoglin alone or combined with other cardiovascular risk factors may contribute to alterations of heart function and structure in Sol-Eng+ mice, which is the topic in our lab in ongoing experiments.
- MeSH
- endoglin biosyntéza genetika MeSH
- hypertenze krev komplikace MeSH
- hypertrofická kardiomyopatie krev etiologie patologie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- modely nemocí na zvířatech MeSH
- myokard metabolismus patologie MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- oxidační stres MeSH
- regulace genové exprese * MeSH
- RNA genetika MeSH
- signální transdukce MeSH
- srdce MeSH
- stanovení celkové genové exprese MeSH
- transformující růstový faktor beta genetika metabolismus MeSH
- western blotting MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Rat liver myofibroblasts (MFB) are the key cells involved in the deposition of extracellular matrix in fibrotic liver. They were isolated by repeated passaging of non-parenchymal cell fraction and cultured in 3-dimensional (3D) collagen gel mimicking tissue. The transfer of MFB from plastic dishes to collagen resulted in the change in their shape from large and spread to slender with long extensions. The expression of transforming growth factor-beta1 (TGF-beta1) and of MFB markers, alpha-smooth muscle actin (alpha-SMA) and cellular fibronectin (EDA-FN), on protein level was significantly decreased in collagen gel. The gel did not change the expression of metalloproteinase MMP-2 but activated the proenzyme. The experiments with inhibitors of metabolic pathways showed that EDA-FN and alpha-SMA were differently regulated. The expression of EDA-FN required functional TGF-beta1 receptors and was also dependent on the activity of protein kinases MEK1 and MEK2. alpha-SMA expression was primarily determined by the 3D environment. Fibroblast growth factor-1 (FGF-1) in combination with heparin decreased the expression of alpha-SMA and increased the expression of EDA-FN in the cells on plastic. The cellular environment may influence the cells per se and may modify the action of other agents.
- MeSH
- aktiny metabolismus MeSH
- benzamidy MeSH
- biologické markery metabolismus MeSH
- butadieny MeSH
- dioxoly MeSH
- fibroblastový růstový faktor 1 metabolismus MeSH
- fibronektiny metabolismus MeSH
- játra cytologie MeSH
- kultivační techniky * MeSH
- kultivované buňky MeSH
- matrixová metaloproteinasa 2 metabolismus MeSH
- myofibroblasty cytologie metabolismus MeSH
- nitrily MeSH
- potkani Sprague-Dawley MeSH
- transformující růstový faktor beta metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Myofibroblast expansion is a critical event in the pathogenesis of liver fibrosis. The activation of hepatic stellate cells (HSC) to myofibroblast (MFB) results in the enhanced production of extracellular matrix (ECM). In this study, we explored the effect of acidic fibroblast growth factor (FGF-1) treatment on a transforming growth factor (TGF-β1) induced MFB conversion. We used HSC-T6 cell line, which represents well-established model of activated HSC. These cells strongly expressed α-smooth muscle actin (α-SMA) and fibronectin (FN-EDA) after stimulation with TGF-β1, which is a stimulus for MFB differentiation and ECM production. FGF-1 reduced proteins expression to levels comparable with untreated cells. Mild repression of secreted gelatinases was seen in culture media after FGF-1 treatment. The exposure of cells to collagen gel leads to changes in cell morphology and in expression of MFB markers. Lack of α-SMA in cells embedded to collagen gel was detected. When stimulated with TGF-β1, the cells increased expression of FN-EDA, but not α-SMA. Although the cells on plastic and in collagen gel show different properties, FGF-1 reduced expression of FN-EDA in both conditions. Disrupting TGF-β1 signalling pathway represents a potential strategy for the treatment of fibrosis. We showed that FGF-1 could antagonize signals initiated by TGF-β1.
- MeSH
- aktiny genetika metabolismus MeSH
- buněčná diferenciace účinky léků MeSH
- buněčné linie MeSH
- exprese genu účinky léků MeSH
- fibroblastový růstový faktor 1 farmakologie MeSH
- fibronektiny genetika metabolismus MeSH
- jaterní hvězdicovité buňky fyziologie MeSH
- kolagen farmakologie MeSH
- krysa rodu rattus MeSH
- messenger RNA analýza MeSH
- myofibroblasty MeSH
- transformující růstový faktor beta genetika metabolismus farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH