Carnosine is a performance-enhancing food supplement with a potential to modulate muscle energy metabolism and toxic metabolites disposal. In this study we explored interrelations between carnosine supplementation (2 g/day, 12 weeks) induced effects on carnosine muscle loading and parallel changes in (i) muscle energy metabolism, (ii) serum albumin glycation and (iii) reactive carbonyl species sequestering in twelve (M/F=10/2) sedentary, overweight-to-obese (BMI: 30.0+/-2.7 kg/m2) adults (40.1+/-6.2 years). Muscle carnosine concentration (Proton Magnetic Resonance Spectroscopy; 1H-MRS), dynamics of muscle energy metabolism (Phosphorus Magnetic Resonance Spectroscopy; 31P-MRS), body composition (Magnetic Resonance Imaging; MRI), resting energy expenditure (indirect calorimetry), glucose tolerance (oGTT), habitual physical activity (accelerometers), serum carnosine and carnosinase-1 content/activity (ELISA), albumin glycation, urinary carnosine and carnosine-propanal concentration (mass spectrometry) were measured. Supplementation-induced increase in muscle carnosine was paralleled by improved dynamics of muscle post-exercise phosphocreatine recovery, decreased serum albumin glycation and enhanced urinary carnosine-propanal excretion (all p<0.05). Magnitude of supplementation-induced muscle carnosine accumulation was higher in individuals with lower baseline muscle carnosine, who had lower BMI, higher physical activity level, lower resting intramuscular pH, but similar muscle mass and dietary protein preference. Level of supplementation-induced increase in muscle carnosine correlated with reduction of protein glycation, increase in reactive carbonyl species sequestering, and acceleration of muscle post-exercise phosphocreatine recovery.
- MeSH
- dospělí MeSH
- fosfokreatin metabolismus MeSH
- karnosin * metabolismus farmakologie MeSH
- kosterní svaly metabolismus MeSH
- lidé MeSH
- Maillardova reakce MeSH
- potravní doplňky MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Magnetic Resonance (MR) compatible ergometers are specialized ergometers used inside the MR scanners for the characterization of tissue metabolism changes during physical stress. They are most commonly used for dynamic phosphorous magnetic resonance spectroscopy (31P MRS), but can also be used for lactate production measurements, perfusion studies using arterial spin labelling or muscle oxygenation measurements by blood oxygen dependent contrast sequences. We will primarily discuss the importance of ergometers in the context of dynamic 31P MRS. Dynamic 31P MRS can monitor muscle fatigue and energy reserve during muscle contractions as well as the dynamics of recuperation of skeletal muscle tissue during the following recovery through signal changes of phosphocreatine (PCr), inorganic phosphate and adenosine triphosphate (ATP). Based on the measured data it is possible to calculate intracellular pH, metabolic flux of ATP through creatine-kinase reaction, anaerobic glycolysis and oxidative phosphorylation and other metabolic parameters as mitochondrial capacity. This review primarily focuses on describing various technical designs of MR compatible ergometers for dynamic 31P MRS that must be constructed with respect to the presence of magnetic field. It is also expected that the construction of ergometers will be easy for the handling and well accepted by examined subjects.
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
PURPOSE: Dynamic phosphorus magnetic resonance spectroscopy ((31)P MRS) during and after acute exercise enables the noninvasive in vivo determination of the mitochondrial capacity of skeletal muscle. Nevertheless, the lack of standardization in experimental setups leads to significant variations in published values of maximal aerobic capacity, even in the population of healthy volunteers. Thus, in this study, we aimed to assess the impact of the ergometer type (pneumatic and mechanical resistance construction), radiofrequency (RF)-coil diameter, and different magnetic field strengths (3 and 7 T) on the metabolic parameters measured by dynamic (31)P MRS during a plantar flexion isotonic exercise protocol within the same group of healthy volunteers. METHODS: Dynamic (31)P MRS measurements of the calf muscle in 11 volunteers (mean age, 36 ± 13 yrs; mean BMI, 23.5 ± 2.5 kg/m(2)), on a 3 T MR system with a custom-made mechanical ergometer in the first research laboratory (RL1) and on 3 and 7 T MR systems equipped with a commercial pneumatic ergometer in the second research laboratory (RL2), were performed at three different workloads. RF-coils differed slightly between the sites and MR systems used. The repeatability of the experimental protocol was tested in every setup. The basal concentrations of phosphocreatine (PCr), exercise-induced depletion of PCr (ΔPCr), initial PCr resynthesis rate (VPCr), and mitochondrial capacity (Qmax) were calculated and compared between the research sites and field strengths. RESULTS: High repeatability of the measurement protocol was found in every experimental setup. No significant differences at any workload were found in these metabolic parameters assessed at different magnetic field strengths (3 T vs 7 T), using the same ergometer (in RL2) and a similar RF-coil. In the inter-research laboratory comparison at the same field strength (3 T), but with using different ergometers and RF-coils, differences were found in the concentration of PCr measured at rest and in the drop in PCr signal intensity. These differences translated into difference in the value of mitochondrial capacity at a workload of 15% of maximal voluntary contraction (MVC) force (0.45 ± 0.16 mM/s vs 0.31 ± 0.08 mM/s, in the RL1 and RL2, respectively). CONCLUSIONS: Metabolic parameters measured during exercise challenge by dynamic (31)P MRS do not depend upon the magnetic field strength used. For multicenter studies with different ergometers, it is important to set the same workload, measurement, and evaluation protocols, especially when the effects of very mild exercise (15% MVC) are to be compared. However, a higher workload (24% MVC) decreases the influence of imperfections and intersite differences for the assessed value of maximal mitochondrial capacity.
- MeSH
- bérec fyziologie MeSH
- cvičení fyziologie MeSH
- design vybavení MeSH
- dospělí MeSH
- ergometrie přístrojové vybavení metody MeSH
- fosfokreatin metabolismus MeSH
- isotonická kontrakce fyziologie MeSH
- izotopy fosforu MeSH
- kosterní svaly metabolismus MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie přístrojové vybavení metody MeSH
- magnetické pole MeSH
- mitochondrie metabolismus MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- MeSH
- informační systémy MeSH
- internet využití MeSH
- počítačem řízená výuka * metody trendy MeSH
- programovaná výuka jako téma MeSH
- sociální sítě MeSH
- studium lékařství metody MeSH
- výuka - hodnocení metody MeSH
- využití lékařské informatiky MeSH
- Publikační typ
- práce podpořená grantem MeSH
- Geografické názvy
- Slovenská republika MeSH