Hydrogen sulfide (H2S) is a gas neurotransmitter that is synthesized in various mammalian tissues including vascular tissues and regulates vascular tone. The aim of this study is to investigate whether the endogenous L-cysteine/H2S pathway is impaired due to aging and endothelial denudation in mouse isolated thoracic aorta. For this purpose, young (3-4 months) and old (23-25 months) mice were used in the experiments. The effects of aging and endothelium on endogenous and exogenous H2S-induced vasorelaxation were investigated by cumulative L-cysteine-(1 microM-10 mM) and NaHS-(1 microM-3 mM) induced vasorelaxations, respectively. The L-cysteine-induced relaxations were reduced in old mice aorta compared to the young mice. Also, vasorelaxant responses to L-cysteine (1 microM-10 mM) were reduced on aorta rings with denuded-endothelium of young and old mice. However, the relaxation responses to NaHS were not altered by age or endothelium denudation. The loss of staining of CSE in the endothelial layer was observed in old thoracic aorta. Ach-induced (1-30 microM) relaxation almost abolished in endothelium-denuded rings from both mice group. Also, relaxation Ach reduced in intact endothelium tissue of old mice aorta. In conclusion, the vasorelaxant responses to L-cysteine but not NaHS decreased and the protein expression of CSE reduced in old thoracic aorta rings consistent with a decrease in H2S concentration with aging and endothelium damage, suggesting that aging may be lead to decrease in enzyme expression and H2S signaling system due to endothelium damage in mouse thoracic aorta. Key words Aging, Hydrogen sulfide, L-cysteine, Endothelium, Thoracic aorta.
- MeSH
- aorta thoracica * účinky léků metabolismus fyziologie MeSH
- cévní endotel * metabolismus účinky léků MeSH
- cystein metabolismus farmakologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- signální transdukce MeSH
- stárnutí * metabolismus MeSH
- sulfan * metabolismus MeSH
- vazodilatace * účinky léků fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The molecular mechanisms linking obstructive sleep apnea syndrome (OSA) to obesity and the development of metabolic diseases are still poorly understood. The role of hypoxia (a characteristic feature of OSA) in excessive fat accumulation has been proposed. The present study investigated the possible effects of hypoxia (4% oxygen) on de novo lipogenesis by tracking the major carbon sources in differentiating 3T3-L1 adipocytes. Gas-permeable cultuware was employed to cultivate 3T3-L1 adipocytes in hypoxia (4%) for 7 or 14 days of differentiation. We investigated the contribution of glutamine, glucose or acetate using 13C or 14C labelled carbons to the newly synthesized lipid pool, changes in intracellular lipid content after inhibiting citrate- or acetate-dependent pathways and gene expression of involved key enzymes. The results demonstrate that, in differentiating adipocytes, hypoxia decreased the synthesis of lipids from glucose (44.1 ± 8.8 to 27.5 ± 3.0 pmol/mg of protein, p < 0.01) and partially decreased the contribution of glutamine metabolized through the reverse tricarboxylic acid cycle (4.6% ± 0.2-4.2% ± 0.1%, p < 0.01). Conversely, the contribution of acetate, a citrate- and mitochondria-independent source of carbons, increased upon hypoxia (356.5 ± 71.4 to 649.8 ± 117.5 pmol/mg of protein, p < 0.01). Further, inhibiting the citrate- or acetate-dependent pathways decreased the intracellular lipid content by 58% and 73%, respectively (p < 0.01) showing the importance of de novo lipogenesis in hypoxia-exposed adipocytes. Altogether, hypoxia modified the utilization of carbon sources, leading to alterations in de novo lipogenesis in differentiating adipocytes and increased intracellular lipid content.
- MeSH
- acetáty * metabolismus farmakologie MeSH
- buněčná diferenciace * účinky léků MeSH
- buňky 3T3-L1 * MeSH
- citrátový cyklus MeSH
- glukosa * metabolismus MeSH
- glutamin * metabolismus MeSH
- hypoxie buňky MeSH
- lipidy biosyntéza MeSH
- lipogeneze * účinky léků MeSH
- metabolismus lipidů účinky léků MeSH
- myši MeSH
- tukové buňky * metabolismus účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
This study evaluated the effects of dietary methionine level and rearing water temperature on growth, antioxidant capacity, methionine metabolism, and hepatocyte autophagy in spotted seabass (Lateolabrax maculatus). A factorial design was used with six methionine levels [0.64, 0.85, 1.11, 1.33, 1.58, and 1.76%] and two temperatures [moderate temperature (MT): 27 °C, and high temperature (HT): 33 °C]. The results revealed the significant effects of both dietary methionine level and water temperature on weight gain (WG) and feed efficiency (FE), and their interaction effect was found on WG (P < 0.05). In both water temperatures tested, fish WG increased with increasing methionine level up to 1.11% and decreased thereafter. The groups of fish reared at MT exhibited dramatically higher WG and FE than those kept at HT while an opposite trend was observed for feed intake. Liver antioxidant indices including reduced glutathione and malondialdehyde (MDA) concentrations, and catalase and superoxide dismutase (SOD) activities remarkably increased in the HT group compared to the MT group. Moreover, the lowest MDA concentration and the highest SOD activity were recorded at methionine levels between 1.11% and 0.85%, respectively, regardless of water temperatures. Expression of methionine metabolism-related key enzyme genes (mat2b, cbs, ms, and bhmt) in the liver was increased at moderate methionine levels, and higher expression levels were detected at MT compared to HT with the exception of ms gene relative expression. Relative expression of hepatocyte autophagy-related genes (pink1, atg5, mul1, foxo3) and hsp70 was upregulated by increasing methionine level up to a certain level and decreased thereafter and increasing water temperature led to significantly enhanced expression of hsp70. In summary, HT induced heat stress and reduced fish growth, and an appropriate dietary methionine level improved the antioxidant capacity and stress resistance of fish. A second-order polynomial regression analysis based on the WG suggested that the optimal dietary methionine level for maximum growth of spotted seabass is 1.22% of the diet at 27 °C and 1.26% of the diet at 33 °C, then 1.37 g and 1.68 g dietary methionine intake is required for 100 g weight gain at 27 °C or 33 °C, respectively.
Induction of autophagy represents an effective survival strategy for nutrient-deprived or stressed cancer cells. Autophagy contributes to the modulation of communication within the tumor microenvironment. Here, we conducted a study of the metabolic and signaling implications associated with autophagy induced by glutamine (Gln) and serum starvation and PI3K/mTOR inhibitor and autophagy inducer NVP-BEZ235 (BEZ) in the head and neck squamous cell carcinoma (HNSCC) cell line FaDu. We compared the effect of these different types of autophagy induction on ATP production, lipid peroxidation, mitophagy, RNA cargo of extracellular vesicles (EVs), and EVs-associated cytokine secretome of cancer cells. Both BEZ and starvation resulted in a decline in ATP production. Simultaneously, Gln starvation enhanced oxidative damage of cancer cells by lipid peroxidation. In starved cells, there was a discernible fragmentation of the mitochondrial network coupled with an increase in the presence of tumor susceptibility gene 101 (TSG101) on the mitochondrial membrane, indicative of the sorting of mitochondrial cargo into EVs. Consequently, the abundance of mitochondrial RNAs (mtRNAs) in EVs released by FaDu cells was enhanced. Notably, mtRNAs were also detectable in EVs isolated from the serum of both HNSCC patients and healthy controls. Starvation and BEZ reduced the production of EVs by cancer cells, yet the characteristic molecular profile of these EVs remained unchanged. We also found that alterations in the release of inflammatory cytokines constitute a principal response to autophagy induction. Importantly, the specific mechanism driving autophagy induction significantly influenced the composition of the EVs-associated cytokine secretome.
- MeSH
- adenosintrifosfát * metabolismus MeSH
- autofagie * účinky léků MeSH
- dlaždicobuněčné karcinomy hlavy a krku metabolismus genetika patologie MeSH
- extracelulární vezikuly * metabolismus účinky léků MeSH
- glutamin * metabolismus MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory hlavy a krku metabolismus patologie genetika MeSH
- oxidační stres * MeSH
- RNA mitochondriální * metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Tumor cells often adapt to amino acid deprivation through metabolic rewiring, compensating for the loss with alternative amino acids/substrates. We have described such a scenario in leukemic cells treated with L-asparaginase (ASNase). Clinical effect of ASNase is based on nutrient stress achieved by its dual enzymatic action which leads to depletion of asparagine and glutamine and is accompanied with elevated aspartate and glutamate concentrations in serum of acute lymphoblastic leukemia patients. We showed that in these limited conditions glutamate uptake compensates for the loss of glutamine availability. Extracellular glutamate flux detection confirms its integration into the TCA cycle and its participation in nucleotide and glutathione synthesis. Importantly, it is glutamate-driven de novo synthesis of glutathione which is the essential metabolic pathway necessary for glutamate's pro-survival effect. In vivo findings support this effect by showing that inhibition of glutamate transporters enhances the therapeutic effect of ASNase. In summary, ASNase induces elevated extracellular glutamate levels under nutrient stress, which leads to a rewiring of intracellular glutamate metabolism and has a negative impact on ASNase treatment.
- MeSH
- akutní lymfatická leukemie farmakoterapie metabolismus patologie MeSH
- asparaginasa * farmakologie metabolismus MeSH
- citrátový cyklus účinky léků MeSH
- glutamin metabolismus MeSH
- glutathion * metabolismus MeSH
- kyselina glutamová * metabolismus MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- protinádorové látky farmakologie MeSH
- xenogenní modely - testy protinádorové aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Alanine and glutamine are the principal glucogenic amino acids. Most originate from muscles, where branched-chain amino acids (valine, leucine, and isoleucine) are nitrogen donors and, under exceptional circumstances, a source of carbons for glutamate synthesis. Glutamate is a nitrogen source for alanine synthesis from pyruvate and a substrate for glutamine synthesis by glutamine synthetase. The following differences between alanine and glutamine, which can play a role in their use in gluconeogenesis, are shown: (i) glutamine appearance in circulation is higher than that of alanine; (ii) the conversion to oxaloacetate, the starting substance for glucose synthesis, is an ATP-consuming reaction for alanine, which is energetically beneficial for glutamine; (iii) most alanine carbons, but not glutamine carbons, originate from glucose; and (iv) glutamine acts a substrate for gluconeogenesis in the liver, kidneys, and intestine, whereas alanine does so only in the liver. Alanine plays a significant role during early starvation, exposure to high-fat and high-protein diets, and diabetes. Glutamine plays a dominant role in gluconeogenesis in prolonged starvation, acidosis, liver cirrhosis, and severe illnesses like sepsis and acts as a substrate for alanine synthesis in the small intestine. Interactions among muscles and the liver, kidneys, and intestine ensuring optimal alanine and glutamine supply for gluconeogenesis are suggested.
- MeSH
- alanin * metabolismus MeSH
- glukoneogeneze * MeSH
- glukosa metabolismus MeSH
- glutamin * metabolismus MeSH
- játra * metabolismus MeSH
- ledviny * metabolismus MeSH
- lidé MeSH
- tenké střevo * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Glioblastoma (GBM) is the most common and aggressive primary brain cancer. The treatment of GBM consists of a combination of surgery and subsequent oncological therapy, i.e., radiotherapy, chemotherapy, or their combination. If postoperative oncological therapy involves irradiation, magnetic resonance imaging (MRI) is used for radiotherapy treatment planning. Unfortunately, in some cases, a very early worsening (progression) or return (recurrence) of the disease is observed several weeks after the surgery and is called rapid early progression (REP). Radiotherapy planning is currently based on MRI for target volumes definitions in many radiotherapy facilities. However, patients with REP may benefit from targeting radiotherapy with other imaging modalities. The purpose of the presented clinical trial is to evaluate the utility of 11C-methionine in optimizing radiotherapy for glioblastoma patients with REP. METHODS: This study is a nonrandomized, open-label, parallel-setting, prospective, monocentric clinical trial. The main aim of this study was to refine the diagnosis in patients with GBM with REP and to optimize subsequent radiotherapy planning. Glioblastoma patients who develop REP within approximately 6 weeks after surgery will undergo 11C-methionine positron emission tomography (PET/CT) examinations. Target volumes for radiotherapy are defined using both standard planning T1-weighted contrast-enhanced MRI and PET/CT. The primary outcome is progression-free survival defined using RANO criteria and compared to a historical cohort with REP treated without PET/CT optimization of radiotherapy. DISCUSSION: PET is one of the most modern methods of molecular imaging. 11C-Methionine is an example of a radiolabelled (carbon 11) amino acid commonly used in the diagnosis of brain tumors and in the evaluation of response to treatment. Optimized radiotherapy may also have the potential to cover those regions with a high risk of subsequent progression, which would not be identified using standard-of-care MRI for radiotherapy planning. This is one of the first study focused on radiotherapy optimization for subgroup of patinets with REP. TRIAL REGISTRATION: NCT05608395, registered on 8.11.2022 in clinicaltrials.gov; EudraCT Number: 2020-000640-64, registered on 26.5.2020 in clinicaltrialsregister.eu. Protocol ID: MOU-2020-01, version 3.2, date 18.09.2020.
- MeSH
- dospělí MeSH
- glioblastom * diagnostické zobrazování terapie diagnóza radioterapie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- methionin * MeSH
- nádory mozku * diagnostické zobrazování terapie radioterapie diagnóza MeSH
- PET/CT metody MeSH
- plánování radioterapie pomocí počítače metody MeSH
- progrese nemoci * MeSH
- prospektivní studie MeSH
- radiofarmaka terapeutické užití MeSH
- radioizotopy uhlíku MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
The recognition that rapidly proliferating cancer cells rely heavily on glutamine for their survival and growth has renewed interest in the development of glutamine antagonists for cancer therapy. Glutamine plays a pivotal role as a carbon source for synthesizing lipids and metabolites through the TCA cycle, as well as a nitrogen source for synthesis of amino acid and nucleotides. Numerous studies have explored the significance of glutamine metabolism in cancer, providing a robust rationale for targeting this metabolic pathway in cancer treatment. The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) has been explored as an anticancer therapeutic for nearly six decades. Initial investigations revealed remarkable efficacy in preclinical studies and promising outcomes in early clinical trials. However, further advancement of DON was hindered due to dose-limiting gastrointestinal (GI) toxicities as the GI system is highly dependent on glutamine for regulating growth and repair. In an effort to repurpose DON and mitigate gastrointestinal (GI) toxicity concerns, prodrug strategies were utilized. These strategies aimed to enhance the delivery of DON to specific target tissues, such as tumors and the central nervous system (CNS), while sparing DON delivery to normal tissues, particularly the GI tract. When administered at low daily doses, optimized for metabolic inhibition, these prodrugs exhibit remarkable effectiveness without inducing significant toxicity to normal tissues. This approach holds promise for overcoming past challenges associated with DON, offering an avenue for its successful utilization in cancer treatment.
- MeSH
- diazooxonorleucin * farmakologie terapeutické užití MeSH
- glutamin metabolismus MeSH
- lidé MeSH
- nádory * farmakoterapie metabolismus MeSH
- prekurzory léčiv * farmakologie terapeutické užití MeSH
- protinádorové látky farmakologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is associated with abnormalities of liver lipid metabolism. On the contrary, a diet enriched with n-3 polyunsaturated fatty acids (n-3-PUFAs) has been reported to ameliorate the progression of NAFLD. The aim of our study was to investigate the impact of dietary n-3-PUFA enrichment on the development of NAFLD and liver lipidome. Mice were fed for 6 weeks either a high-fat methionine choline-deficient diet (MCD) or standard chow with or without n-3-PUFAs. Liver histology, serum biochemistry, detailed plasma and liver lipidomic analyses, and genome-wide transcriptome analysis were performed. Mice fed an MCD developed histopathological changes characteristic of NAFLD, and these changes were ameliorated with n-3-PUFAs. Simultaneously, n-3-PUFAs decreased serum triacylglycerol and cholesterol concentrations as well as ALT and AST activities. N-3-PUFAs decreased serum concentrations of saturated and monounsaturated free fatty acids (FAs), while increasing serum concentrations of long-chain PUFAs. Furthermore, in the liver, the MCD significantly increased the hepatic triacylglycerol content, while the administration of n-3-PUFAs eliminated this effect. Administration of n-3-PUFAs led to significant beneficial differences in gene expression within biosynthetic pathways of cholesterol, FAs, and pro-inflammatory cytokines (IL-1 and TNF-α). To conclude, n-3-PUFA supplementation appears to represent a promising nutraceutical approach for the restoration of abnormalities in liver lipid metabolism and the prevention and treatment of NAFLD.
- MeSH
- cholesterol metabolismus MeSH
- cholin metabolismus MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- játra metabolismus MeSH
- kyseliny mastné neesterifikované metabolismus MeSH
- methionin metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nealkoholová steatóza jater * etiologie genetika MeSH
- nenasycené mastné kyseliny metabolismus MeSH
- omega-3 mastné kyseliny * farmakologie terapeutické užití metabolismus MeSH
- Racemethionin metabolismus farmakologie MeSH
- triglyceridy metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH