Developmental remodeling shapes neural circuits via activity-dependent pruning of synapses and axons. Regulation of the cytoskeleton is critical for this process, as microtubule loss via enzymatic severing is an early step of pruning across many circuits and species. However, how microtubule-severing enzymes, such as spastin, are activated in specific neuronal compartments remains unknown. Here, we reveal that polyglutamylation, a post-translational tubulin modification enriched in neurons, plays an instructive role in developmental remodeling by tagging microtubules for severing. Motor neuron-specific gene deletion of enzymes that add or remove tubulin polyglutamylation-TTLL glutamylases vs. CCP deglutamylases-accelerates or delays neuromuscular synapse remodeling in a neurotransmission-dependent manner. This mechanism is not specific to peripheral synapses but also operates in central circuits, e.g., the hippocampus. Thus, tubulin polyglutamylation acts as a cytoskeletal rheostat of remodeling that shapes neuronal morphology and connectivity.
- MeSH
- hipokampus metabolismus cytologie MeSH
- kyselina polyglutamová * metabolismus MeSH
- mikrotubuly * metabolismus MeSH
- motorické neurony * metabolismus MeSH
- myši MeSH
- nervosvalové spojení metabolismus MeSH
- nervový přenos MeSH
- neurony * metabolismus MeSH
- neuroplasticita * fyziologie MeSH
- peptidsynthasy metabolismus genetika MeSH
- posttranslační úpravy proteinů MeSH
- spastin metabolismus MeSH
- synapse metabolismus MeSH
- tubulin metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Nedd4-2 E3 ligase regulates Na+ homeostasis by ubiquitinating various channels and membrane transporters, including the epithelial sodium channel ENaC. In turn, Nedd4-2 dysregulation leads to various conditions, including electrolytic imbalance, respiratory distress, hypertension, and kidney diseases. However, Nedd4-2 regulation remains mostly unclear. The present study aims at elucidating Nedd4-2 regulation by structurally characterizing Nedd4-2 and its complexes using several biophysical techniques. Our cryo-EM reconstruction shows that the C2 domain blocks the E2-binding surface of the HECT domain. This blockage, ubiquitin-binding exosite masking by the WW1 domain, catalytic C922 blockage and HECT domain stabilization provide the structural basis for Nedd4-2 autoinhibition. Furthermore, Ca2+-dependent C2 membrane binding disrupts C2/HECT interactions, but not Ca2+ alone, whereas 14-3-3 protein binds to a flexible region of Nedd4-2 containing the WW2 and WW3 domains, thereby inhibiting its catalytic activity and membrane binding. Overall, our data provide key mechanistic insights into Nedd4-2 regulation toward fostering the development of strategies targeting Nedd4-2 function.
- MeSH
- elektronová kryomikroskopie MeSH
- HEK293 buňky MeSH
- lidé MeSH
- molekulární modely MeSH
- proteinové domény MeSH
- proteiny 14-3-3 * metabolismus chemie MeSH
- ubikvitinace MeSH
- ubikvitinligasy Nedd4 * metabolismus chemie genetika ultrastruktura MeSH
- vápník * metabolismus MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Protein misfolding diseases, including α1-antitrypsin deficiency (AATD), pose substantial health challenges, with their cellular progression still poorly understood1-3. We use spatial proteomics by mass spectrometry and machine learning to map AATD in human liver tissue. Combining Deep Visual Proteomics (DVP) with single-cell analysis4,5, we probe intact patient biopsies to resolve molecular events during hepatocyte stress in pseudotime across fibrosis stages. We achieve proteome depth of up to 4,300 proteins from one-third of a single cell in formalin-fixed, paraffin-embedded tissue. This dataset reveals a potentially clinically actionable peroxisomal upregulation that precedes the canonical unfolded protein response. Our single-cell proteomics data show α1-antitrypsin accumulation is largely cell-intrinsic, with minimal stress propagation between hepatocytes. We integrated proteomic data with artificial intelligence-guided image-based phenotyping across several disease stages, revealing a late-stage hepatocyte phenotype characterized by globular protein aggregates and distinct proteomic signatures, notably including elevated TNFSF10 (also known as TRAIL) amounts. This phenotype may represent a critical disease progression stage. Our study offers new insights into AATD pathogenesis and introduces a powerful methodology for high-resolution, in situ proteomic analysis of complex tissues. This approach holds potential to unravel molecular mechanisms in various protein misfolding disorders, setting a new standard for understanding disease progression at the single-cell level in human tissue.
- MeSH
- alfa-1-antitrypsin metabolismus MeSH
- analýza jednotlivých buněk MeSH
- deficit alfa1-antitrypsinu * patologie metabolismus genetika MeSH
- fenotyp MeSH
- hepatocyty metabolismus patologie MeSH
- jaterní cirhóza patologie metabolismus MeSH
- játra patologie metabolismus MeSH
- lidé MeSH
- progrese nemoci MeSH
- proteom * analýza metabolismus MeSH
- proteomika * metody MeSH
- signální dráha UPR MeSH
- strojové učení MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Proteomics is nowadays increasingly becoming part of the routine clinical practice of diagnostic laboratories, especially due to the advent of advanced mass spectrometry techniques. This review focuses on the application of proteomic analysis in the identification of pathological conditions in a hospital setting, with a particular focus on the analysis of protein biomarkers. In particular, the main purpose of the review is to highlight the challenges associated with the identification of specific disease-causing proteins, given their complex nature and the variety of posttranslational modifications (PTMs) they can undergo. PTMs, such as phosphorylation and glycosylation, play critical roles in protein function but can also lead to diseases if dysregulated. Proteomics plays an important role especially in various medical fields ranging from cardiology, internal medicine to hemato-oncology emphasizing the interdisciplinary nature of this field. Traditional methods such as electrophoretic or immunochemical methods have been mainstay in protein detection; however, these techniques are limited in terms of specificity and sensitivity. Examples include the diagnosis of multiple myeloma and the detection of its specific protein or amyloidosis, which relies heavily on these conventional methods, which sometimes lead to false positives or inadequate disease monitoring. Mass spectrometry in this respect emerges as a superior alternative, providing high sensitivity and specificity in the detection and quantification of specific protein sequences. This technique is particularly beneficial for monitoring minimal residual disease (MRD) in the diagnosis of multiple myeloma where traditional methods fall short. Furthermore mass spectrometry can provide precise typing of amyloid proteins, which is crucial for the appropriate treatment of amyloidosis. This review summarizes the opportunities for proteomic determination using mass spectrometry between 2012 and 2024, highlighting the transformative potential of mass spectrometry in clinical proteomics and encouraging its wider use in diagnostic laboratories.
Membrane contact sites harbor a distinct set of proteins with varying biological functions, thereby emerging as hubs for localized signaling nanodomains underlying adequate cell function. Here, we will focus on mitochondria-associated endoplasmic reticulum membranes (MAMs), which serve as hotspots for Ca2+ signaling, redox regulation, lipid exchange, mitochondrial quality and unfolded protein response pathway. A network of MAM-resident proteins contributes to the structural integrity and adequate function of MAMs. Beyond endoplasmic reticulum (ER)-mitochondrial tethering proteins, MAMs contain several multi-protein complexes that mediate the transfer of or are influenced by Ca2+, reactive oxygen species and lipids. Particularly, IP3 receptors, intracellular Ca2+-release channels, and Sigma-1 receptors (S1Rs), ligand-operated chaperones, serve as important platforms that recruit different accessory proteins and intersect with these local signaling processes. Furthermore, many of these proteins are directly implicated in pathophysiological conditions, where their dysregulation or mutation is not only causing diseases such as cancer and neurodegeneration, but also rare genetic diseases, for example familial Parkinson's disease (PINK1, Parkin, DJ-1), familial Amyotrophic lateral sclerosis (TDP43), Wolfram syndrome1/2 (WFS1 and CISD2), Harel-Yoon syndrome (ATAD3A). In this review, we will discuss the current state-of-the-art regarding the molecular components, protein platforms and signaling networks underlying MAM integrity and function in cell function and how their dysregulation impacts MAMs, thereby driving pathogenesis and/or impacting disease burden. We will highlight how these insights can generate novel, potentially therapeutically relevant, strategies to tackle disease outcomes by improving the integrity of MAMs and the signaling processes occurring at these membrane contact sites.
- MeSH
- endoplazmatické retikulum * metabolismus patologie MeSH
- intracelulární membrány * metabolismus MeSH
- lidé MeSH
- mitochondriální membrány metabolismus MeSH
- mitochondrie * metabolismus patologie MeSH
- nádory * metabolismus patologie terapie genetika MeSH
- neurodegenerativní nemoci * metabolismus patologie terapie genetika MeSH
- receptor sigma-1 MeSH
- receptory sigma metabolismus MeSH
- signální dráha UPR MeSH
- vápníková signalizace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Targeting ubiquitin E3 ligases is therapeutically attractive; however, the absence of an active-site pocket impedes computational approaches for identifying inhibitors. In a large, unbiased biochemical screen, we discover inhibitors that bind a cryptic cavity distant from the catalytic cysteine of the homologous to E6-associated protein C terminus domain (HECT) E3 ligase, SMAD ubiquitin regulatory factor 1 (SMURF1). Structural and biochemical analyses and engineered escape mutants revealed that these inhibitors restrict an essential catalytic motion by extending an α helix over a conserved glycine hinge. SMURF1 levels are increased in pulmonary arterial hypertension (PAH), a disease caused by mutation of bone morphogenetic protein receptor-2 (BMPR2). We demonstrated that SMURF1 inhibition prevented BMPR2 ubiquitylation, normalized bone morphogenetic protein (BMP) signaling, restored pulmonary vascular cell homeostasis, and reversed pathology in established experimental PAH. Leveraging this deep mechanistic understanding, we undertook an in silico machine-learning-based screen to identify inhibitors of the prototypic HECT E6AP and confirmed glycine-hinge-dependent allosteric activity in vitro. Inhibiting HECTs and other glycine-hinge proteins opens a new druggable space.
- MeSH
- alosterická regulace účinky léků MeSH
- lidé MeSH
- myši MeSH
- plicní arteriální hypertenze farmakoterapie MeSH
- receptory morfogenetických kostních proteinů typu II MeSH
- signální transdukce účinky léků MeSH
- ubikvitinace účinky léků MeSH
- ubikvitinligasy * antagonisté a inhibitory metabolismus chemie genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Changes in cellular physiology and proteomic homeostasis accompanied the initiation and progression of colorectal cancer. Thus, ubiquitination represents a central regulatory mechanism in proteome dynamics. However, the complexity of the ubiquitinating network involved in carcinogenesis remains unclear. This study revealed the tumor-suppressive role of the ubiquitin ligase Cullin4A (CUL4A) in the intestine. We showed that simultaneous loss of CUL4A and hyperactivation of the Wnt pathway promotes tumor development in the distal colon. This tumor development is caused by an accumulation of the inactive SMAD3, a TGF-β pathway mediator. Depletion of CUL4A resulted in stabilization of HUWE1, which attenuated SMAD3 function. We showed a correlation between the intracellular localization of CUL4A and colorectal cancer progression, where nuclear CUL4A localization correlates with advanced colorectal cancer progression. In summary, we identified CUL4A as an important regulator of SMAD3 signal transduction competence in a HUWE1-dependent manner and demonstrated a critical role for the crosstalk between ubiquitination and the Wnt/TGF-β signaling pathways in gastrointestinal homeostasis.
- MeSH
- HCT116 buňky MeSH
- kolorektální nádory * patologie genetika metabolismus MeSH
- kulinové proteiny * metabolismus genetika MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové supresorové proteiny * metabolismus genetika MeSH
- protein Smad3 * metabolismus genetika MeSH
- regulace genové exprese u nádorů MeSH
- signální dráha Wnt MeSH
- ubikvitinace MeSH
- ubikvitinligasy * metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Východiska: Signální dráha UPR (unfolded protein response, tj. odpověď na chybně složené proteiny) pomáhá myelomovým buňkám vyrovnat se se stresovými podmínkami vzniklými v důsledku nadměrné proteosyntézy, a představuje tak pro myelomové buňky prostředek umožňující jejich přežití. Extramedulární onemocnění je agresivnější forma mnohočetného myelomu, při které myelomové buňky ztrácí svoji závislost na mikroprostředí kostní dřeně a mohou infiltrovat jiné tkáně a orgány. Patogeneze vzniku extramedulárního onemocnění není dosud zcela objasněna. Cílem této studie bylo zjistit, zda existuje rozdíl v expresi genů spjatých s UPR mezi plazmatickými buňkami kostní dřeně od pacientů s mnohočetným myelomem a extramedulárním onemocněním. Materiál a metody: Pomocí reverzní transkripce ve spojení s kvantitativní polymerázovou řetězovou reakcí byla analyzována exprese šesti genů spjatých s UPR (ERN1, DDIT3, EIF2AK3, TUSC3, XBP1, HSPA5). Použito bylo celkem 76 vzorků plazmatických buněk kostní dřeně, z toho 44 bylo od pacientů s mnohočetným myelomem a 32 od pacientů s extramedulárním onemocněním. Výsledky: Byl pozorován statisticky významný rozdíl v expresi genů HSPA5, DDIT3, EIF2AK3 a ERN1 mezi skupinou mnohočetného myelomu a extramedulárního onemocnění; exprese byla ve všech případech vyšší u vzorků od pacientů s extramedulárním onemocněním. V případě genů XBP1 a TUSC3 nebyl pozorován statisticky významný rozdíl. Prokázáno bylo také několik statisticky významných korelací mezi hladinou exprese analyzovaných genů a klinickými daty pacientů. Závěr: Výsledky poukazují na možný význam signální dráhy UPR v patogenezi extramedulárního onemocnění. UPR se jeví jako vhodný směr dalšího výzkumu.
Background: The unfolded protein response (UPR) enables myeloma cells to overcome the stress conditions arising from excessive proteosynthesis and thus provides a survival advantage for myeloma cells. Extramedullary disease is a more aggressive form of multiple myeloma in which myeloma cells lose their dependence on the bone marrow microenvironment and are able to infiltrate other tissues and organs. The pathogenesis of extramedullary disease is not fully elucidated yet. The aim of this study was to determine whether there is a difference in the expression of UPR-related genes between bone marrow plasma cells from multiple myeloma and extramedullary disease patients. Materials and methods: Gene expression of six genes involved in UPR (ERN1, DDIT3, EIF2AK3, TUSC3, XBP1, HSPA5) was analyzed by quantitative reverse transcription polymerase chain reaction. In total, 76 bone marrow plasma cell samples were used, of which 44 were from patients with multiple myeloma and 32 from patients with extramedullary disease. Results: A statistically significant difference was observed between the multiple myeloma and extramedullary disease groups regarding the expression of HSPA5, DDIT3, EIF2AK3, and ERN1 genes. However, in the case of XBP1 and TUSC3 genes, no statistically significant difference in the expression was found. Several statistically significant correlations between the expression levels of the analyzed genes and the clinical data of the patients were observed as well. Conclusion: Our results suggest the importance of UPR in the pathogenesis of extramedullary disease. UPR appears to be a promising avenue for further research.
Bone lengthening and fracture repair depend on the anabolic properties of chondrocytes that function in an avascular milieu. The limited supply of oxygen and nutrients calls into question how biosynthesis and redox homeostasis are guaranteed. Here we show that glucose metabolism by the pentose phosphate pathway (PPP) is essential for endochondral ossification. Loss of glucose-6-phosphate dehydrogenase in chondrocytes does not affect cell proliferation because reversal of the non-oxidative PPP produces ribose-5-phosphate. However, the decreased NADPH production reduces glutathione recycling, resulting in decreased protection against the reactive oxygen species (ROS) produced during oxidative protein folding. The disturbed proteostasis activates the unfolded protein response and protein degradation. Moreover, the oxidative stress induces ferroptosis, which, together with altered matrix properties, results in a chondrodysplasia phenotype. Collectively, these data show that in hypoxia, the PPP is crucial to produce reducing power that confines ROS generated by oxidative protein folding and thereby controls proteostasis and prevents ferroptosis.
- MeSH
- chondrocyty * metabolismus MeSH
- ferroptóza * fyziologie MeSH
- glukosa-6-fosfátdehydrogenasa metabolismus MeSH
- glukosa metabolismus MeSH
- myši MeSH
- oxidace-redukce MeSH
- oxidační stres * MeSH
- pentózofosfátový cyklus * MeSH
- reaktivní formy kyslíku * metabolismus MeSH
- sbalování proteinů * MeSH
- signální dráha UPR MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Histones are positively charged proteins found in the chromatin of eukaryotic cells. They regulate gene expression and are required for the organization and packaging of DNA within the nucleus. Histones are extremely conserved, allowing for transcription, replication, and repair. This review delves into their complex structure and function in DNA assembly, their role in nucleosome assembly, and the higher-order chromatin structures they generate. We look at the five different types of histone proteins: H1, H2A, H2B, H3, H4, and their variations. These histones bind with DNA to produce nucleosomes, the basic units of chromatin that are essential for compacting DNA and controlling its accessibility. Their dynamic control of chromatin accessibility has important implications for genomic stability and cellular activities. We elucidate regulatory mechanisms in both normal and pathological situations by investigating their structural features, diverse interaction mechanisms, and chromatin impact. In addition, we discuss the functions of histone post-translational modifications (PTMs) and their significance in various disorders. These alterations, which include methylation, acetylation, phosphorylation, and ubiquitination, are crucial in regulating histone function and chromatin dynamics. We specifically describe and explore the role of changed histones in the evolution of cancer, neurological disorders, sepsis, autoimmune illnesses, and inflammatory conditions. This comprehensive review emphasizes histone's critical role in genomic integrity and their potential as therapeutic targets in various diseases.
- MeSH
- chromatin metabolismus genetika chemie MeSH
- DNA * metabolismus chemie MeSH
- genom MeSH
- histony * metabolismus chemie genetika MeSH
- lidé MeSH
- nádory genetika metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH