The use of high quality fused silica capillary nanospray tips is critical for obtaining reliable and reproducible electrospray/MS data; however, reproducible laboratory preparation of such tips is a challenging task. In this work, we report on the design and construction of low-cost grinding device assembled from 3D printed and commercially easily available components. Detailed description and characterization of the grinding device is complemented by freely accessible files in stl and skp format allowing easy laboratory replication of the device. The process of sharpening is aimed at achieving maximal symmetricity, surface smoothness and repeatability of the conus shape. Moreover, the presented grinding device brings possibility to fabricate the nanospray tips of desired dimensions regardless of the commercial availability. On several samples of biological nature (reserpine, rabbit plasma, and the mixture of three aminoacids), performance of fabricated tips is shown on CE coupled to MS analysis. The special interest is paid to the effect of tip sharpness.
Tkáňové expandéry jsou od osmdesátých let 20. století akceptovanou chirurgickou technikou v řešení traumatických, pooperačních a jiných defektů nebo nedostatku tkání. Ve vlasaté části hlavy se zavádí buď podkožně, nebo subgaleárně nad periost, a umožňují tak získat kožní lalok včetně vlasových folikulů. Jednou z největších komplikací je špatný výběr místa pro tkáňový expandér. Na kazuistice ukazujeme, že k plánování jeho vhodného umístění může pomoci 3D rekonstrukce z CT a následně 3D tisk.
Tissue expanders have been an accepted surgical technique in the treatment of traumatic, post-operative and other defects and loss of tissue since the 1980s. The expander is inserted in the hairy part of the scalp either subcutaneously or subgaleally above the periosteum, thus enabling the skin lobe, including hair follicles, to develop normally. One of the major complications is the poor choice of location for the tissue expander. In the case report, we will present that 3D modeling from CT and subsequent 3D printing can help to plan its most suitable location.
- MeSH
- Printing, Three-Dimensional MeSH
- Carcinoma, Basal Cell surgery MeSH
- Middle Aged MeSH
- Humans MeSH
- Scalp surgery MeSH
- Tissue Expansion Devices * MeSH
- Imaging, Three-Dimensional MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Case Reports MeSH
Peptide-peptide interactions are crucial in the living cell as they lead to the formation of the numerous types of complexes. In this study, synthetic peptides containing 11 of cysteines (α-domain of metallothionein (MT)) and sialic acid binding region (130-loop of hemagglutinin (HA)) were employed. The aim of the experiment was studying the interactions between MT and HA-derived peptides. For this purpose, fragments were tagged with cysteines at C-terminal part to serve as ligand sites for PbS and CuS quantum dots (QDs), and therefore these conjugates can be traced and quantified during wide spectrum of methods. As a platform for interaction, γ-Fe2O3 paramagnetic particles modified with tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane (hydrodynamic diameter 30-40 nm) were utilized and MT/HA interactions were examined using multi-instrumental approach including electrochemistry, electrophoretic methods, and MALDI-TOF/TOF mass spectrometry. It was found that peptides enter mutual creation of complexes, which are based on some of nonbonded interactions. The higher willingness to interact was observed in MT-derived peptides toward immobilized HA. Finally, we designed and manufactured flow-through electrochemical 3D printed device (reservoir volume 150 μL) and utilized it for automated analysis of the HA/MT metal labels. Under the optimal conditions, (deposition time and flow rate 80 s and 1.6 mL/min for CuS and 120 s and 1.6 mL/min PbS, respectively), the results of peptide-conjugated QDs were comparable with atomic absorption spectrometry.
Three-dimensional (3D) printing technology offers attractive possibilities for many fields. In electrochemistry, 3D printing technology has been used to fabricate customized 3D-printed electrodes as a platform to develop bio/sensing, energy generation and storage devices. Here, we use a 3D-printed graphene/polylactic (PLA) electrode made by additive manufacturing technology and immobilize horseradish peroxidase (HRP) to create a direct electron transfer enzyme-based biosensors for hydrogen peroxide detection. Gold nanoparticles are included in the system to confirm and facilitate heterogeneous electron transfer. This work opens a new direction for the fabrication of third-generation electrochemical biosensors using 3D printing technology, with implications for applications in the environmental and biomedical fields.
PURPOSE: Endoscopic ear surgery has become a popular operative approach to treat middle ear diseases. Surgeons use either 0° or 30° endoscopes worldwide. The main aim of the work was to compare the properties of these two types of endoscopes. MATERIAL AND METHODS: Since this type of evaluation is hard to perform in vivo during the actual surgery, we designed 3D printed temporal bone models with different levels of complexity. The evaluation of endoscopes was based on image analysis or visibility of anatomical structures. RESULTS: The results show that a 30° endoscope offers a view of lateral walls from 4 mm distance, contrary to a 0° endoscope which cannot see lateral walls from this distance at all. On the other hand, visible area of the anterior wall is up to 40 % larger using 0° endoscope, compared to 30° endoscope. Angled endoscope distorts the picture and leads to the deterioration of the image. At commonly used distances above 5 mm from middle ear structures, resolution and image distortion is comparable between both endoscopes. CONCLUSIONS: Our results do not offer a definitive opinion on which endoscope is better for ear surgery. Both types of endoscopes have advantages and disadvantages, and the choice depends on the surgeon's personal preference and on the type of planned procedure.
- MeSH
- Printing, Three-Dimensional * MeSH
- Models, Anatomic * MeSH
- Equipment Design MeSH
- Endoscopy * methods MeSH
- Endoscopes * MeSH
- Humans MeSH
- Otologic Surgical Procedures * methods instrumentation MeSH
- Temporal Bone surgery MeSH
- Ear, Middle * surgery MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
There is a rapidly growing interest in low-cost, fast and sensitive biosensors. In particular, direct determination of important metabolites, serving as biomarkers of various pathological states can significantly enhance the treatment successes. In our study, we introduce a technical concept of a 3D printed biosensor, which employs polydimethylsiloxane chip with volume of 50 µL as an inert and optically clear reservoir for recognition element and fluorescence detection. By using a 3D printing technology, low production cost and high crafting reproducibility were achieved. Due to a presence of controlled electromagnet, the biosensor can be utilized for a broad spectrum of applications, based on paramagnetic nano- or microscaled materials.
Liquid-liquid extraction methods are widely used for sample treatment in bioanalysis, although their implementation poses a common speed-limiting step in the analytical process when fast separation and detection methods such as UHPLC-MS are used. This study aimed to develop high-throughput salting-out assisted liquid-liquid extraction on a 96-well plate in combination with fast LC-MS analysis of ibrutinib and its active metabolite PCI-45227 (dihydrodiol ibrutinib) in human serum. A specially designed 3D printed extraction device developed in our laboratory allowed for the precise and rapid collection of the organic phase from the 96-well plate using a multichannel pipette, without the risk of aspiration of the bottom aqueous layer. The application of this device significantly accelerated sample preparation and allowed the processing of up to 96 samples in 1 h. The method was successfully validated according to EMA guidelines in the concentration range of 0.1-200 ng/mL for both analytes, providing lower limit of quantification at 100 pg/mL. The intra-day accuracy for IBT was in the range of - 1.67-5.67 %, while the inter-day accuracy was in the range of 0.20-6.90 %. The intra-day precision for IBT was in the range of 3.20-4.37 % and 3.13-4.73 % for the inter-day measurement. PCI-45227 showed intra-day accuracy in the range of - 11.2-3.71 % and the inter-day accuracy in the range of - 5.76-0.92 %. The intra-day precision for PCI was in the range of 3.49-7.64 % and 3.63-8.61 % for the measurement between days. In addition to increasing the speed of sample preparation, this method also offers low consumption of the sample and extraction solvent and can be utilized for other similar small-volume in-well plate extractions where organic solvents of lower density than water are used. The method was successfully applied to the analysis of serum samples (n = 5) of patients with chronic lymphoblastic leukaemia at the trough level (ibrutinib concentration range: 1.63-3.78 ng/mL, PCI-45227 concentration range: 1.84-14.02 ng/mL) and 2 h postdose (ibrutinib concentration range: 7.34-89.0 ng/mL, PCI-45227 concentration range: 5.64-124 ng/mL).
- MeSH
- Printing, Three-Dimensional MeSH
- Adenine analogs & derivatives MeSH
- Liquid-Liquid Extraction methods MeSH
- Percutaneous Coronary Intervention * MeSH
- Humans MeSH
- Piperidines MeSH
- Pyrazoles MeSH
- Solvents MeSH
- Tandem Mass Spectrometry * methods MeSH
- Chromatography, High Pressure Liquid methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Cardiovascular diseases are the leading cause of mortality worldwide. Given the limited endogenous regenerative capabilities of cardiac tissue, patient-specific anatomy, challenges in treatment options, and shortage of donor tissues for transplantation, there is an urgent need for novel approaches in cardiac tissue repair. 3D bioprinting is a technology based on additive manufacturing which allows for the design of precisely controlled and spatially organized structures, which could possibly lead to solutions in cardiac tissue repair. In this review, we describe the basic morphological and physiological specifics of the heart and cardiac tissues and introduce the readers to the fundamental principles underlying 3D printing technology and some of the materials/approaches which have been used to date for cardiac repair. By summarizing recent progress in 3D printing of cardiac tissue and valves with respect to the key features of cardiovascular tissue (such as contractility, conductivity, and vascularization), we highlight how 3D printing can facilitate surgical planning and provide custom-fit implants and properties that match those from the native heart. Finally, we also discuss the suitability of this technology in the design and fabrication of custom-made devices intended for the maturation of the cardiac tissue, a process that has been shown to increase the viability of implants. Altogether this review shows that 3D printing and bioprinting are versatile and highly modulative technologies with wide applications in cardiac regeneration and beyond.
- MeSH
- Printing, Three-Dimensional MeSH
- Bioprinting * methods MeSH
- Humans MeSH
- Heart MeSH
- Tissue Engineering * methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
A novel application of the three-dimensional printing technology for the automation of solid phase extraction procedures in a low-pressure sequential injection analysis system is presented. A 3D printed device was used as a housing for nanofiber membranes in solid phase extraction. The applicability of the device is demonstrated with the extraction of substances of various physical-chemical properties. Pharmaceuticals including non-steroidal anti-inflammatory drugs, antihistaminics, and steroidal structures, as well as emerging pollutants such as bisphenols and pesticide metsulfuron methyl were used as model analytes to study the extraction performance of the nanofibers. Six different nanofiber types comprising polyamide, polyethylene, polyvinylidene fluoride, polycaprolactone combined with polyvinylidene fluoride, and polyacrylonitrile, produced by electrospinning were tested in solid phase extraction. The suitability of specific nanofibers for particular analytes is demonstrated.
- Publication type
- Journal Article MeSH
Simple analytical devices suitable for the analysis of various biochemical and immunechemical markers are highly desirable and can provide laboratory diagnoses outside standard hospitals. This study focuses on constructing an easily reproducible do-it-yourself ELISA plate reader biosensor device, assembled from generally available and inexpensive parts. The colorimetric biosensor was based on standard 96-well microplates, 3D-printed parts, and a smartphone camera as a detector was utilized here as a tool to replace the ELISA method, and its function was illustrated in the assay of TNFα as a model immunochemical marker. The assay provided a limit of detection of 19 pg/mL when the B channel of the RGB color model was used for calibration. The assay was well correlated with the ELISA method, and no significant matrix effect was observed for standard biological samples or interference of proteins expected in a sample. The results of this study will inform the development of simple analytical devices easily reproducible by 3D printing and found on generally available electronics.