Článok predstavuje a hodnotí prelomové technologické postupy v ortodoncii: skutočný a pseudo 3D záznam, ich spracovanie a vizualizácie. Popisuje postup od celohlavového záznamu CBCT iCAT cez export do stereolitografického formátu (STL) až po jeho 3D tlač. Článok hodnotí možnosti manipulácie s týmto 3D záznamom a tiež sa detailnejšie sa venuje téme „rapid prototypingu" a perspektívam klinického využitia rôznych variant 3D tlače vrátane tlače biokompatibilnými materiálmi, napríklad titánom (AM/ EMB).
The article introduces and reviews revolutionary technologies and procedures in orthodontics: true ar pseudo 3D record, its processing and visualization. In particular, it describes procedure from CBCT iCATTM scanning through its export to stereolithographic (STL) format and final 3D print. In addition, the article reviews possibilities of 3D CBCT volume and brings the current view on rapid prototyping and perspectives of various 3D print techniques in clinical orthodontics including printing by biocompatible materials like titanium (AM/EBM).
Článek popisuje možnosti zpracování medicínských dat potnoci programu Analyze. Program Analyze představuje propracovaný systém umožňující předzpracování a vizualizaci medicínských dat jak ve 2D, tak v 3D prostoru. v oblasti 2D jsou to nástroje pro konverzi vstupnich dat, filtraci (včetně rychlé Fourierovy a Wavelet transformace), segmentaci a operace s rastrovými obrazy. U prostorového zpracování je možné provádět rekonstrukce dat z paralelních rastrových řezů získaných například Z CT a MRI. Program zahrnuje nástroje pro měření a prezentaci výsledků.
The article deals with the possibilities of processing medical data using the program Analyze. The program Analyze represents a complex system for pre-processing and visualization of medical data in both 2D and 3D space. In 2D mode it represents image conversion, filtering (including fast Fourier and Wavelet transformation), segmentation and operations with raster pictures. In 3D it allows users to reconstruct data from parallel raster slices obtained from CT and MR. The program also comprises tools for measurement and presentation of results.
- MeSH
- Medical Informatics Computing MeSH
- Humans MeSH
- Software MeSH
- Data Display MeSH
- Check Tag
- Humans MeSH
Summary: Amino acid residues showing above background levels of conservation are often indicative of functionally significant regions within a protein. Understanding how the sequence conservation profile relates in space requires projection onto a protein structure, a potentially time-consuming process. 3DPatch is a web application that streamlines this task by automatically generating multiple sequence alignments (where appropriate) and finding structural homologs, presenting the user with a choice of structures matching their query, annotated with residue conservation scores in a matter of seconds. Availability and implementation: 3DPatch is written in JavaScript and is freely available at http://www.skylign.org/3DPatch/. Mozilla Firefox, Google Chrome, and Safari web browsers are supported. Source code is available under MIT license at https://github.com/davidjakubec/3DPatch. Supplementary information: Supplementary data are available at Bioinformatics online.
- MeSH
- Databases, Protein MeSH
- Web Browser MeSH
- Protein Conformation * MeSH
- Humans MeSH
- Sequence Alignment * MeSH
- Software * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The representation of carbohydrates in 3D space using symbols is a powerful visualization method, but such representations are lacking in currently available visualization software. The work presented here allows researchers to display carbohydrate 3D structures as 3D-SNFG symbols using LiteMol from a web browser (e.g., v.litemol.org/?loadFromCS=5T3X ). Any PDB ID can be substituted at the end of the URL. Alternatively, the user may enter a PDB ID or upload a structure. LiteMol is available at https://v.litemol.org and automatically depicts any carbohydrate residues as 3D-SNFG symbols. To embed LiteMol in a webpage, visit https://github.com/dsehnal/LiteMol .
Současná zdravotnická technika produkuje každým okamžikem velké objemy dat. Výsledkem je informační přetížení a nemožnost zvládnout tato enormní data, např. na odd. intenzivní péče. Nástroje pro vizualizaci dat mají za cíl zmenšit toto informační přetížení pomocí inteligentní abstrakce a vizualizace zajímavých atributů zpracovávaných dat. Nově vyvíjené soft - warové nástroje pro vizualizaci by měly podporovat rychlé porozumění složitým, rozsáhlým a dynamicky rostoucím datovým souborům ve všech oblastech medicíny. Jednou z takových oblastí je analýza a vyhodnocování dlouhodobých záznamů EEG. S vyhodnocováním EEG je spojena celá řada problémů. Jedním z nich je potřeba vizuální kontroly záznamu lékařem. V případě, že lékař musí kontrolovat a hodnotit dlouhodobý záznam EEG, je počítačová podpora analýzy a vizualizace velkou pomocí. Právě možnosti vizualizace EEG záznamů a procesu jejich analýzy jsou předmětem našeho příspěvku.
Healthcare technology produces today large sets of data every second. An information overload results from these enormous data volumes not manageable by physicians, e.g. in intensive care. Data visualization tools aim at reducing the information overload by intelligent abstraction and visualization of the features of interest in the current situation. Newly developed soft - ware tools for visualization should support fast comprehension of complex, large, and dynamically growing datasets in all fi elds of medicine. One of such fi elds is the analysis and evaluation of long–term EEG recordings. One of the problems that are connected with the evaluation of EEG signals is that it necessitates visual checking of such a recording performed by a physician. In case the physician has to check and evaluate long–term EEG recordings computer–aided data analysis and visualization might be of great help. Soft ware tools for visualization of EEG data and data analysis are presented in the paper.
- MeSH
- Algorithms MeSH
- Models, Anatomic MeSH
- Electroencephalography utilization MeSH
- Epilepsy diagnosis MeSH
- Financing, Organized MeSH
- Classification MeSH
- Coma diagnosis physiopathology MeSH
- Humans MeSH
- Brain Mapping methods instrumentation MeSH
- Models, Neurological MeSH
- Neural Networks, Computer MeSH
- Signal Processing, Computer-Assisted instrumentation MeSH
- Cluster Analysis MeSH
- Sleep physiology MeSH
- Imaging, Three-Dimensional MeSH
- Check Tag
- Humans MeSH
The Complex Portal (www.ebi.ac.uk/complexportal) is a manually curated, encyclopaedic database that collates and summarizes information on stable, macromolecular complexes of known function. It captures complex composition, topology and function and links out to a large range of domain-specific resources that hold more detailed data, such as PDB or Reactome. We have made several significant improvements since our last update, including improving compliance to the FAIR data principles by providing complex-specific, stable identifiers that include versioning. Protein complexes are now available from 20 species for download in standards-compliant formats such as PSI-XML, MI-JSON and ComplexTAB or can be accessed via an improved REST API. A component-based JS front-end framework has been implemented to drive a new website and this has allowed the use of APIs from linked services to import and visualize information such as the 3D structure of protein complexes, its role in reactions and pathways and the co-expression of complex components in the tissues of multi-cellular organisms. A first draft of the complete complexome of Saccharomyces cerevisiae is now available to browse and download.
- MeSH
- Databases, Protein * MeSH
- Protein Conformation MeSH
- Humans MeSH
- Macromolecular Substances chemistry MeSH
- Multiprotein Complexes chemistry metabolism MeSH
- Mice MeSH
- Nucleic Acids chemistry MeSH
- Computer Graphics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Cell culture methods have been developed in efforts to produce biologically relevant systems for developmental and disease modeling, and appropriate analytical tools are essential. Knowledge of ultrastructural characteristics represents the basis to reveal in situ the cellular morphology, cell-cell interactions, organelle distribution, niches in which cells reside, and many more. The traditional method for 3D visualization of ultrastructural components, serial sectioning using transmission electron microscopy (TEM), is very labor-intensive due to contentious TEM slice preparation and subsequent image processing of the whole collection. In this chapter, we present serial block-face scanning electron microscopy, together with complex methodology for spheroid formation, contrasting of cellular compartments, image processing, and 3D visualization. The described technique is effective for detailed morphological analysis of stem cell spheroids, organoids, as well as organotypic cell cultures.
- MeSH
- Spheroids, Cellular ultrastructure MeSH
- Embryonic Stem Cells ultrastructure MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Microscopy, Electron, Scanning methods MeSH
- Image Processing, Computer-Assisted MeSH
- Imaging, Three-Dimensional methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
The present paper aims to test performances of semi-automatic tools for mesh-to-mesh processing while assessing sex and ancestry in documented human crania. The studied sample of 80 human crania, which originated in two documented Brazilian collections (São Paulo, Brazil) was digitized using photogrammetry and laser scanning. 3D cranial morphology was quantified by computing inter-mesh dissimilarity measures using in-house freeware FIDENTIS Analyst (www.fidentis.com). Numerical outputs were further processed using Discriminant Function Analysis and Canonical Variant Analysis in order to classify models into sex and ancestry groups. In addition, cranial morphology was described by a set of 37 landmarks, processed by a Procrustes analysis and confronted with the inter-mesh comparison. Patterns of sexual dimorphism and ancestral group-specific variation were interpreted using average meshes and further emphasized by employing advanced visualization graphics. The mesh-to-mesh processing was capable to detect shape differences related to sex and ancestry. The highest accuracy levels for sex determination were obtained for meshes representing the facial skeleton and the supraorbital region. For both, analysis correctly assigned 82.5% of the crania. Ancestry-related differences were manifested primarily in the global cranial features (observed accuracy rates reaching 63%). The advanced visualization tools provided a highly informative insight into sexual dimorphism and ancestry-related variation. While in the current state the technique cannot be considered suitable for being implemented into the everyday forensic practice, the extent of automatization proved to be perspective, especially for assessing skeletal features that cannot be properly quantified using discrete variables.
- MeSH
- Microscopy, Confocal methods utilization MeSH
- Humans MeSH
- Specimen Handling methods utilization MeSH
- Computers MeSH
- Image Processing, Computer-Assisted methods utilization MeSH
- Programming Languages MeSH
- Software MeSH
- Statistics as Topic MeSH
- Models, Theoretical MeSH
- Imaging, Three-Dimensional methods instrumentation utilization MeSH
- Check Tag
- Humans MeSH
Extracellularly distributed collagen and chondrocytes seeded in gelatine and poly-ɛ-caprolactone scaffolds are visualized by two-photon excitation microscopy (TPEM) and second-harmonic generation (SHG) imaging in both forward and backward nondescanned modes. Joint application of TPEM and SHG imaging in combination with stereological measurements of collagen enables us not only to take high-resolution 3-D images, but also to quantitatively analyze the collagen volume and a spatial arrangement of cell-collagen-scaffold systems, which was previously impossible. This novel approach represents a powerful tool for the analysis of collagen-containing scaffolds with applications in cartilage tissue engineering.
- MeSH
- Chondrocytes cytology metabolism transplantation MeSH
- Microscopy, Fluorescence methods MeSH
- Image Interpretation, Computer-Assisted methods MeSH
- Collagen metabolism ultrastructure MeSH
- Rabbits MeSH
- Cells, Cultured MeSH
- Nonlinear Dynamics MeSH
- Tissue Scaffolds MeSH
- Imaging, Three-Dimensional methods MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH