Axonal growth
Dotaz
Zobrazit nápovědu
Advances in neurochemistry ; v. 6
xvi, 284 s. : il. ; 24 cm
- MeSH
- axonální transport MeSH
- nervový systém - fyziologické jevy MeSH
- neurochemie MeSH
- neurotrofní faktory MeSH
- Publikační typ
- monografie MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- neurovědy
Investigating the molecular mechanisms governing developmental axon growth has been a useful approach for identifying new strategies for boosting axon regeneration after injury, with the goal of treating debilitating conditions such as spinal cord injury and vision loss. The picture emerging is that various axonal organelles are important centers for organizing the molecular mechanisms and machinery required for growth cone development and axon extension, and these have recently been targeted to stimulate robust regeneration in the injured adult central nervous system (CNS). This review summarizes recent literature highlighting a central role for organelles such as recycling endosomes, the endoplasmic reticulum, mitochondria, lysosomes, autophagosomes and the proteasome in developmental axon growth, and describes how these organelles can be targeted to promote axon regeneration after injury to the adult CNS. This review also examines the connections between these organelles in developing and regenerating axons, and finally discusses the molecular mechanisms within the axon that are required for successful axon growth.
- MeSH
- lidé MeSH
- organely metabolismus patologie MeSH
- poranění míchy * metabolismus patologie terapie MeSH
- regenerace nervu * MeSH
- růstové kužele metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Brain development is determined by neuronal differentiation including changes of cell polarity and asymetric grow- th of neuronal processes. Although, there are many unkown factors contributing to changes of lenght of neuronal cones, mounting experimental and review papers focus on changes of growth conus and role of axonal transport. In particular, mechanisms of actin/microtubule polymerisation and depolymerisation are important. Role of intracellu- lar calcium is also significant. Normal and properly timed changes of lenght of axons and dendrites are dependent on interaction of neurons and glia. Moreover, regeneration of injured axons is dependent on growth factors secre- ted from glial cells. The aim of the present study is characterisation of the most important mechanisms underlying changes of lenght of neurites.
- Klíčová slova
- kofilin,
- MeSH
- aktiny biosyntéza MeSH
- axony fyziologie MeSH
- dendrity fyziologie MeSH
- dyneiny biosyntéza fyziologie MeSH
- lidé MeSH
- mikrotubuly fyziologie MeSH
- morfogeneze MeSH
- mozková kůra růst a vývoj MeSH
- myosiny biosyntéza fyziologie MeSH
- nervový růstový faktor MeSH
- nervový systém - fyziologické jevy MeSH
- neurity MeSH
- neuroglie cytologie MeSH
- neurony fyziologie MeSH
- růst MeSH
- synapse MeSH
- vápník zásobování a distribuce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
BACKGROUND: Vascular endothelial growth factor (VEGF) is not only a potent angiogenic factor but it also promotes axonal outgrowth and proliferation of Schwann cells. The aim of the present study was to quantitatively assess reinnervation of musculocutaneous nerve (MCN) stumps using motor and primary sensory neurons after plasmid phVEGF transfection and end-to-end (ETE) or end-to-side (ETS) neurorrhaphy. The distal stump of rat transected MCN, was transfected with plasmid phVEGF, plasmid alone or treated with vehiculum and reinnervated following ETE or ETS neurorrhaphy for 2 months. The number of motor and dorsal root ganglia neurons reinnervating the MCN stump was estimated following their retrograde labeling with Fluoro-Ruby and Fluoro-Emerald. Reinnervation of the MCN stumps was assessed based on density, diameter and myelin sheath thickness of regenerated axons, grooming test and the wet weight index of the biceps brachii muscles. RESULTS: Immunohistochemical detection under the same conditions revealed increased VEGF in the Schwann cells of the MCN stumps transfected with the plasmid phVEGF, as opposed to control stumps transfected with only the plasmid or treated with vehiculum. The MCN stumps transfected with the plasmid phVEGF were reinnervated by moderately higher numbers of motor and sensory neurons after ETE neurorrhaphy compared with control stumps. However, morphometric quality of myelinated axons, grooming test and the wet weight index were significantly better in the MCN plasmid phVEGF transfected stumps. The ETS neurorrhaphy of the MCN plasmid phVEGF transfected stumps in comparison with control stumps resulted in significant elevation of motor and sensory neurons that reinnervated the MCN. Especially noteworthy was the increased numbers of neurons that sent out collateral sprouts into the MCN stumps. Similarly to ETE neurorrhaphy, phVEGF transfection resulted in significantly higher morphometric quality of myelinated axons, behavioral test and the wet weight index of the biceps brachii muscles. CONCLUSION: Our results showed that plasmid phVEGF transfection of MCN stumps could induce an increase in VEGF protein in Schwann cells, which resulted in higher quality axon reinnervation after both ETE and ETS neurorrhaphy. This was also associated with a better wet weight biceps brachii muscle index and functional tests than in control rats.
- MeSH
- dextrany diagnostické užití MeSH
- fluoresceiny diagnostické užití MeSH
- genetická terapie metody MeSH
- krysa rodu rattus MeSH
- mícha patologie MeSH
- modely nemocí na zvířatech MeSH
- nemoci periferního nervového systému patologie terapie MeSH
- nervová vlákna myelinizovaná patologie MeSH
- nervus musculocutaneus metabolismus patologie fyziologie MeSH
- neurologické vyšetření MeSH
- neurony metabolismus patologie MeSH
- potkani Wistar MeSH
- přední končetina patofyziologie MeSH
- regenerace nervu genetika fyziologie MeSH
- rhodaminy diagnostické užití MeSH
- vaskulární endoteliální růstový faktor A biosyntéza metabolismus terapeutické užití MeSH
- velikost orgánu fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Axon regeneration in the CNS is inhibited by many extrinsic and intrinsic factors. Because these act in parallel, no single intervention has been sufficient to enable full regeneration of damaged axons in the adult mammalian CNS. In the external environment, NogoA and CSPGs are strongly inhibitory to the regeneration of adult axons. CNS neurons lose intrinsic regenerative ability as they mature: embryonic but not mature neurons can grow axons for long distances when transplanted into the adult CNS, and regeneration fails with maturity in in vitro axotomy models. The causes of this loss of regeneration include partitioning of neurons into axonal and dendritic fields with many growth-related molecules directed specifically to dendrites and excluded from axons, changes in axonal signalling due to changes in expression and localization of receptors and their ligands, changes in local translation of proteins in axons, and changes in cytoskeletal dynamics after injury. Also with neuronal maturation come epigenetic changes in neurons, with many of the transcription factor binding sites that drive axon growth-related genes becoming inaccessible. The overall aim for successful regeneration is to ensure that the right molecules are expressed after axotomy and to arrange for them to be transported to the right place in the neuron, including the damaged axon tip.
- MeSH
- axonální transport fyziologie MeSH
- axony fyziologie MeSH
- centrální nervový systém cytologie fyziologie MeSH
- lidé MeSH
- nervový útlum fyziologie MeSH
- neurogeneze fyziologie MeSH
- proteosyntéza fyziologie MeSH
- regenerace nervu fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
There are no known drugs or drug combinations that promote substantial central nervous system axonal regeneration after injury. We used systems pharmacology approaches to model pathways underlying axonal growth and identify a four-drug combination that regulates multiple subcellular processes in the cell body and axons using the optic nerve crush model in rats. We intravitreally injected agonists HU-210 (cannabinoid receptor-1) and IL-6 (interleukin 6 receptor) to stimulate retinal ganglion cells for axonal growth. We applied, in gel foam at the site of nerve injury, Taxol to stabilize growing microtubules, and activated protein C to clear the debris field since computational models predicted that this drug combination regulating two subcellular processes at the growth cone produces synergistic growth. Physiologically, drug treatment restored or preserved pattern electroretinograms and some of the animals had detectable visual evoked potentials in the brain and behavioral optokinetic responses. Morphology experiments show that the four-drug combination protects axons or promotes axonal regrowth to the optic chiasm and beyond. We conclude that spatially targeted drug treatment is therapeutically relevant and can restore limited functional recovery.
- Publikační typ
- časopisecké články MeSH
Regulation of axon guidance and pruning of inappropriate synapses by class 3 semaphorins are key to the development of neural circuits. Collapsin response mediator protein 2 (CRMP2) has been shown to regulate axon guidance by mediating semaphorin 3A (Sema3A) signaling; however, nothing is known about its role in synapse pruning. Here, using newly generated crmp2-/- mice we demonstrate that CRMP2 has a moderate effect on Sema3A-dependent axon guidance in vivo, and its deficiency leads to a mild defect in axon guidance in peripheral nerves and the corpus callosum. Surprisingly, crmp2-/- mice display prominent defects in stereotyped axon pruning in hippocampus and visual cortex and altered dendritic spine remodeling, which is consistent with impaired Sema3F signaling and with models of autism spectrum disorder (ASD). We demonstrate that CRMP2 mediates Sema3F signaling in primary neurons and that crmp2-/- mice display ASD-related social behavior changes in the early postnatal period as well as in adults. Together, we demonstrate that CRMP2 mediates Sema3F-dependent synapse pruning and its dysfunction shares histological and behavioral features of ASD.
- MeSH
- dendritické trny MeSH
- membránové proteiny fyziologie MeSH
- mezibuněčné signální peptidy a proteiny genetika MeSH
- myši knockoutované MeSH
- myši MeSH
- neurony MeSH
- neuroplasticita MeSH
- poruchy autistického spektra * MeSH
- proteiny nervové tkáně genetika fyziologie MeSH
- semaforiny * MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Axon guidance relies on precise translation of extracellular signal gradients into local changes in cytoskeletal dynamics, but the molecular mechanisms regulating dose-dependent responses of growth cones are still poorly understood. Here, we show that during embryonic development in growing axons, a low level of Semaphorin3A stimulation is buffered by the prolyl isomerase Pin1. We demonstrate that Pin1 stabilizes CDK5-phosphorylated CRMP2A, the major isoform of CRMP2 in distal axons. Consequently, Pin1 knockdown or knockout reduces CRMP2A levels specifically in distal axons and inhibits axon growth, which can be fully rescued by Pin1 or CRMP2A expression. Moreover, Pin1 knockdown or knockout increases sensitivity to Sema3A-induced growth cone collapse in vitro and in vivo, leading to developmental abnormalities in axon guidance. These results identify an important isoform-specific function and regulation of CRMP2A in controlling axon growth and uncover Pin1-catalyzed prolyl isomerization as a regulatory mechanism in axon guidance.
- MeSH
- axony metabolismus MeSH
- dánio pruhované MeSH
- fosforylace MeSH
- imunohistochemie MeSH
- imunoprecipitace MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- peptidylprolylisomerasa genetika metabolismus MeSH
- proteiny dánia pruhovaného genetika metabolismus MeSH
- proteiny nervové tkáně genetika metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH