Bayesian prediction
Dotaz
Zobrazit nápovědu
Zpracování znalostí zatížených nejistotou je jednou z nejdůležitějších aplikací metod umělé inteligence. Použití technologie bayesovských sítí umožňuje pro tyto ucely využít výsledky po několik století budované teorie pravděpodobnosti a pracovat s mnohorozměrnými pravdepodobnostními distribucemi V tomto případě muže být rozměr distribucí roven stovkám, případně i tisícům. To znamená, že tato technologie může být použita na reálné aplikace, na skutečné problémy, jejichž složitost přesahuje možnosti většiny dalších přístupů pro modelování nejistých znalostí. Vzhledem k tomu, že se jedná o poměrně mladou disciplínu, nelze říci, že všechny teoretické problémy a problémy spojené s návrhem aplikací již byly úspěšně vyřešeny. Nejvíce otevřených problémů je spojeno právě s konstrukcí bayesovských sítu Přesto sejižobjevují aplikace, které naznačují, že bayesovské sítě se stanoujednítn z mocných nástrojů umělé inteligence pro řešení složitých problémů. Proto lze předpokládat, že se s bayesovskými sítěmi budeme v blízké budoucnosti setkávat i v medicíně, která je jednou z oblastí, kde deterministická znalost je spíše výjimkou.
Uncertain knowledge processing is one of the most important applications of artificial intelligence. Bayesian network technology, taking advantage of for several centuries developed results of probability theory, enables processing of multidimensional probability distributions whose dimensionality equals hundreds or even thousands. Therefore, this technology can be applied to real-life problems whose complexity goes beyond cambility of most other approaches for uncertain knowledge processing. It cannot be said that this relatively new discipline has Iready solved all its theoretical and practical problems. Most of still open problems are connected with zonstraction of Bayesian network models for practical applications. Nevertheless, recently published applications suggest that Bayesian network will become one of he most powerful tool of artificial intelligence for uncertain knowledge processing. Therefore, we can assume that in near future we shall meet Bayesian network in medical applications as this field is one of those where deterministic knowledge is exception.
BACKGROUND AND OBJECTIVE: In silico prediction of drug-target interactions (DTI) could provide valuable information and speed-up the process of drug repositioning - finding novel usage for existing drugs. In our work, we focus on machine learning algorithms supporting drug-centric repositioning approach, which aims to find novel usage for existing or abandoned drugs. We aim at proposing a per-drug ranking-based method, which reflects the needs of drug-centric repositioning research better than conventional drug-target prediction approaches. METHODS: We propose Bayesian Ranking Prediction of Drug-Target Interactions (BRDTI). The method is based on Bayesian Personalized Ranking matrix factorization (BPR) which has been shown to be an excellent approach for various preference learning tasks, however, it has not been used for DTI prediction previously. In order to successfully deal with DTI challenges, we extended BPR by proposing: (i) the incorporation of target bias, (ii) a technique to handle new drugs and (iii) content alignment to take structural similarities of drugs and targets into account. RESULTS: Evaluation on five benchmark datasets shows that BRDTI outperforms several state-of-the-art approaches in terms of per-drug nDCG and AUC. BRDTI results w.r.t. nDCG are 0.929, 0.953, 0.948, 0.897 and 0.690 for G-Protein Coupled Receptors (GPCR), Ion Channels (IC), Nuclear Receptors (NR), Enzymes (E) and Kinase (K) datasets respectively. Additionally, BRDTI significantly outperformed other methods (BLM-NII, WNN-GIP, NetLapRLS and CMF) w.r.t. nDCG in 17 out of 20 cases. Furthermore, BRDTI was also shown to be able to predict novel drug-target interactions not contained in the original datasets. The average recall at top-10 predicted targets for each drug was 0.762, 0.560, 1.000 and 0.404 for GPCR, IC, NR, and E datasets respectively. CONCLUSIONS: Based on the evaluation, we can conclude that BRDTI is an appropriate choice for researchers looking for an in silico DTI prediction technique to be used in drug-centric repositioning scenarios. BRDTI Software and supplementary materials are available online at www.ksi.mff.cuni.cz/∼peska/BRDTI.
- MeSH
- Bayesova věta MeSH
- diagnóza počítačová metody MeSH
- lidé MeSH
- nádory plic MeSH
- plicní nemoci MeSH
- Check Tag
- lidé MeSH
BACKGROUND: We provide an overview of Bayesian estimation, hypothesis testing, and model-averaging and illustrate how they benefit parametric survival analysis. We contrast the Bayesian framework to the currently dominant frequentist approach and highlight advantages, such as seamless incorporation of historical data, continuous monitoring of evidence, and incorporating uncertainty about the true data generating process. METHODS: We illustrate the application of the outlined Bayesian approaches on an example data set, retrospective re-analyzing a colon cancer trial. We assess the performance of Bayesian parametric survival analysis and maximum likelihood survival models with AIC/BIC model selection in fixed-n and sequential designs with a simulation study. RESULTS: In the retrospective re-analysis of the example data set, the Bayesian framework provided evidence for the absence of a positive treatment effect of adding Cetuximab to FOLFOX6 regimen on disease-free survival in patients with resected stage III colon cancer. Furthermore, the Bayesian sequential analysis would have terminated the trial 10.3 months earlier than the standard frequentist analysis. In a simulation study with sequential designs, the Bayesian framework on average reached a decision in almost half the time required by the frequentist counterparts, while maintaining the same power, and an appropriate false-positive rate. Under model misspecification, the Bayesian framework resulted in higher false-negative rate compared to the frequentist counterparts, which resulted in a higher proportion of undecided trials. In fixed-n designs, the Bayesian framework showed slightly higher power, slightly elevated error rates, and lower bias and RMSE when estimating treatment effects in small samples. We found no noticeable differences for survival predictions. We have made the analytic approach readily available to other researchers in the RoBSA R package. CONCLUSIONS: The outlined Bayesian framework provides several benefits when applied to parametric survival analyses. It uses data more efficiently, is capable of considerably shortening the length of clinical trials, and provides a richer set of inferences.
One of the most common statistical analyses in experimental psychology concerns the comparison of two means using the frequentist t test. However, frequentist t tests do not quantify evidence and require various assumption tests. Recently, popularized Bayesian t tests do quantify evidence, but these were developed for scenarios where the two populations are assumed to have the same variance. As an alternative to both methods, we outline a comprehensive t test framework based on Bayesian model averaging. This new t test framework simultaneously takes into account models that assume equal and unequal variances, and models that use t-likelihoods to improve robustness to outliers. The resulting inference is based on a weighted average across the entire model ensemble, with higher weights assigned to models that predicted the observed data well. This new t test framework provides an integrated approach to assumption checks and inference by applying a series of pertinent models to the data simultaneously rather than sequentially. The integrated Bayesian model-averaged t tests achieve robustness without having to commit to a single model following a series of assumption checks. To facilitate practical applications, we provide user-friendly implementations in JASP and via the RoBTT package in R . A tutorial video is available at https://www.youtube.com/watch?v=EcuzGTIcorQ.
- MeSH
- Bayesova věta MeSH
- experimentální psychologie * metody MeSH
- interpretace statistických dat MeSH
- lidé MeSH
- statistické modely * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Statistics in practice
1st ed. xi, 266 s.
Bayesian parameter estimation and Bayesian hypothesis testing present attractive alternatives to classical inference using confidence intervals and p values. In part I of this series we outline ten prominent advantages of the Bayesian approach. Many of these advantages translate to concrete opportunities for pragmatic researchers. For instance, Bayesian hypothesis testing allows researchers to quantify evidence and monitor its progression as data come in, without needing to know the intention with which the data were collected. We end by countering several objections to Bayesian hypothesis testing. Part II of this series discusses JASP, a free and open source software program that makes it easy to conduct Bayesian estimation and testing for a range of popular statistical scenarios (Wagenmakers et al. this issue).
- MeSH
- Bayesova věta * MeSH
- lidé MeSH
- psychologie * MeSH
- výzkumný projekt MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Bayesian hypothesis testing presents an attractive alternative to p value hypothesis testing. Part I of this series outlined several advantages of Bayesian hypothesis testing, including the ability to quantify evidence and the ability to monitor and update this evidence as data come in, without the need to know the intention with which the data were collected. Despite these and other practical advantages, Bayesian hypothesis tests are still reported relatively rarely. An important impediment to the widespread adoption of Bayesian tests is arguably the lack of user-friendly software for the run-of-the-mill statistical problems that confront psychologists for the analysis of almost every experiment: the t-test, ANOVA, correlation, regression, and contingency tables. In Part II of this series we introduce JASP ( http://www.jasp-stats.org ), an open-source, cross-platform, user-friendly graphical software package that allows users to carry out Bayesian hypothesis tests for standard statistical problems. JASP is based in part on the Bayesian analyses implemented in Morey and Rouder's BayesFactor package for R. Armed with JASP, the practical advantages of Bayesian hypothesis testing are only a mouse click away.
- MeSH
- Bayesova věta * MeSH
- lidé MeSH
- psychologie * MeSH
- software * MeSH
- výzkumný projekt MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Detection of peptides lies at the core of bottom-up proteomics analyses. We examined a Bayesian approach to peptide detection, integrating match-based models (fragments, retention time, isotopic distribution, and precursor mass) and peptide prior probability models under a unified probabilistic framework. To assess the relevance of these models and their various combinations, we employed a complete- and a tail-complete search of a low-precursor-mass synthetic peptide library based on oncogenic KRAS peptides. The fragment match was by far the most informative match-based model, while the retention time match was the only remaining such model with an appreciable impact--increasing correct detections by around 8 %. A peptide prior probability model built from a reference proteome greatly improved the detection over a uniform prior, essentially transforming de novo sequencing into a reference-guided search. The knowledge of a correct sequence tag in advance to peptide-spectrum matching had only a moderate impact on peptide detection unless the tag was long and of high certainty. The approach also derived more precise error rates on the analyzed combinatorial peptide library than those estimated using PeptideProphet and Percolator, showing its potential applicability for the detection of homologous peptides. Although the approach requires further computational developments for routine data analysis, it illustrates the value of peptide prior probabilities and presents a Bayesian approach for their incorporation into peptide detection.
Bayesian inference is used to determine the Air Kerma Rate based on in-situ gamma spectrum measurement performed with an NaI(Tl) scintillation detector. The procedure accounts for uncertainties in the measurement and in the mass energy transfer coefficients needed for the calculation. The WinBUGS program (Spiegelhalter et al., 1999) was used. The results show that the relative uncertainties in the Air Kerma estimate are of about 1%, and that the choice of unfolding procedure may lead to an estimate systematic error of 3%.