Guard cells on the leaf epidermis regulate stomatal opening for gas exchange between plants and the atmosphere, allowing a balance between photosynthesis and transpiration. Given that guard cells possess several characteristics of sink tissues, their metabolic activities should largely depend on mesophyll-derived sugars. Early biochemical studies revealed sugar uptake into guard cells. However, the transporters that are involved and their relative contribution to guard cell function are not yet known. Here, we identified the monosaccharide/proton symporters Sugar Transport Protein 1 and 4 (STP1 and STP4) as the major plasma membrane hexose sugar transporters in the guard cells of Arabidopsis thaliana. We show that their combined action is required for glucose import to guard cells, providing carbon sources for starch accumulation and light-induced stomatal opening that are essential for plant growth. These findings highlight mesophyll-derived glucose as an important metabolite connecting stomatal movements with photosynthesis.
Sulfate is frequently found in the influent of subsurface-flow constructed wetlands (SSF CWs) used as tertiary treatments. To reveal the effects of plants and litters on sulfate removal, as well as the competition for organic carbon among microorganisms in SSF CWs, five laboratory-scale SSF CW microcosms were set up and were operated as a batch system with HRT 5 d. The results showed that the presence of Typha latifolia had little effect on sulfate removal in CWs, with or without additional carbon sources. Cattail litter addition greatly improved sulfate removal in SSF CWs. This improvement was linked to the continuous input of labile organic carbon, which lowers the redox level and supplies a habitat for sulfate reducing bacteria (SRB). The presence of SRB in cattail litter indicated the possibility of sulfate removal around the carbon supplier, but the quantity of microbes in cattail litter was much lower than that in gravel. Stoichiometry calculations showed that the contribution of SRB to COD removal (21-26%) was less than that of methane-producing bacteria (MPB) (47-61%) during the initial stage but dominated COD removal (42-65%) during the terminal stage. The contributions of aerobic bacteria (AB) and denitrification bacteria (DB) to COD removal were always lower than that of SRB. It was also observed that the variations in COD: S ratio had a great influence on the relative abundance of genes between SRB and MPB and both of them could be used as good predictors of carbon competition between SRB and MPB in CWs.
- MeSH
- Bacteria metabolism MeSH
- Biomass MeSH
- Water Pollutants, Chemical chemistry metabolism MeSH
- Water Purification methods MeSH
- Wetlands * MeSH
- Waste Disposal, Fluid * MeSH
- Typhaceae physiology MeSH
- RNA, Ribosomal, 16S MeSH
- Sulfates chemistry metabolism MeSH
- Carbon chemistry metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The ability of added acetaldehyde to stimulate growth in ethanol-stressed Saccharomyces cerevisiae while grown on non-fermentable substrates (ethanol, glycerol) is reported. The addition of acetaldehyde to ethanol-stressed yeast grown on either ethanol or glycerol led to a significant decrease in lag time of 67 and 45 %, respectively (p = 0.000) and an increase in the specific growth rate (0.008-0.038/h and 0.060-0.074/h, respectively). The stimulatory effect of acetaldehyde could be mimicked by the addition of propionaldehyde. Results, following metabolic tracing of the added stimulants, question the previously held notion that the acetaldehyde effect in S. cerevisiae is fully redox related.
- MeSH
- Acetaldehyde pharmacology MeSH
- Aldehydes pharmacology MeSH
- Ethanol pharmacology metabolism MeSH
- Stress, Physiological genetics MeSH
- Glucose metabolism MeSH
- Glycerol metabolism MeSH
- Culture Media metabolism MeSH
- Oxidation-Reduction MeSH
- Saccharomyces cerevisiae growth & development drug effects MeSH
- Carbon metabolism MeSH
Black carbon - a primary component of particulate matter emitted from an incomplete combustion of fossil fuels, biomass, and biofuels - has been found to have a detrimental effect on human health and the environment. Since black carbon emissions data are not readily available, no measures are implemented to reduce black carbon emissions. The temporal and seasonal variations of black carbon concentrations were evaluated during 2012-2014. The data were collected in the highly polluted European city - Ostrava, Czech Republic, surrounded by major highways and large industries. Significantly higher black carbon concentrations were obtained in Ostrava, relative to other European cities and the magnitude was equivalent to the magnitude of black carbon concentrations measured in Poland and China. The data were categorized to heating and non-heating seasons based on the periodic pattern of daily and monthly average concentrations of black carbon. A higher black carbon concentration was obtained during heating season than non-heating season and was primarily associated with an increase in residential coal burning and meteorological parameters. The concentration of black carbon was found to be negatively correlated with temperature and wind speed, and positively correlated with the relative humidity. Other black carbon sources potentially included emissions from vehicle exhaust and the local steel-producing industry.
- MeSH
- Biomass MeSH
- Fossil Fuels MeSH
- Air Pollutants analysis MeSH
- Humans MeSH
- Particulate Matter analysis MeSH
- Seasons MeSH
- Coal MeSH
- Carbon analysis MeSH
- Cities MeSH
- Vehicle Emissions analysis MeSH
- Environmental Pollution MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- China MeSH
- Europe MeSH
- Poland MeSH
- Cities MeSH
Aerobic anoxygenic phototrophs contain photosynthetic reaction centers composed of bacteriochlorophyll. These organisms are photoheterotrophs, as they require organic carbon substrates for their growth whereas light-derived energy has only an auxiliary function. To establish the contribution of light energy to their metabolism, we grew the phototrophic strain Erythrobacter sp. NAP1 in a carbon-limited chemostat regimen on defined carbon sources (glutamate, pyruvate, acetate, and glucose) under conditions of different light intensities. When grown in a light-dark cycle, these bacteria accumulated 25% to 110% more biomass in terms of carbon than cultures grown in the dark. Cultures grown on glutamate accumulated the most biomass at moderate light intensities of 50 to 150 μmol m(-2) s(-1) but were inhibited at higher light intensities. In the case of pyruvate, we did not find any inhibition of growth by high irradiance. The extent of anaplerotic carbon fixation was detemined by radioactive bicarbonate incorporation assays. While the carboxylation activity provided 4% to 11% of the cellular carbon in the pyruvate-grown culture, in the glutamate-grown cells it provided only approximately 1% of the carbon. Additionally, we tested the effect of light on respiration and photosynthetic electron flow. With increasing light intensity, respiration decreased to approximately 25% of its dark value and was replaced by photophosphorylation. The additional energy from light allows the aerobic anoxygenic phototrophs to accumulate the supplied organic carbon which would otherwise be respired. The higher efficiency of organic carbon utilization may provide an important competitive advantage during growth under carbon-limited conditions.
- MeSH
- Aerobiosis MeSH
- Biomass MeSH
- Phototrophic Processes * MeSH
- Bicarbonates metabolism MeSH
- Isotope Labeling MeSH
- Carbon Isotopes metabolism MeSH
- Carbon Cycle MeSH
- Culture Media chemistry MeSH
- Pyruvates metabolism MeSH
- Sphingomonadaceae metabolism radiation effects MeSH
- Light * MeSH
- Darkness MeSH
- Electron Transport MeSH
- Carbon metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH