Cell-matrix interaction
Dotaz
Zobrazit nápovědu
Biotechnology intelligence unit
[1st ed.] 248 s.
XIX, 382 s. : il. ; 24 cm
Galectin-3 (Gal-3) is a β-galactoside-binding protein that influences various cell functions, including cell adhesion. We focused on the role of Gal-3 as an extracellular ligand mediating cell-matrix adhesion. We used human adipose tissue-derived stem cells and human umbilical vein endothelial cells that are promising for vascular tissue engineering. We found that these cells naturally contained Gal-3 on their surface and inside the cells. Moreover, they were able to associate with exogenous Gal-3 added to the culture medium. This association was reduced with a β-galactoside LacdiNAc (GalNAcβ1,4GlcNAc), a selective ligand of Gal-3, which binds to the carbohydrate recognition domain (CRD) in the Gal-3 molecule. This ligand was also able to detach Gal-3 newly associated with cells but not Gal-3 naturally present on cells. In addition, Gal-3 preadsorbed on plastic surfaces acted as an adhesion ligand for both cell types, and the cell adhesion was resistant to blocking with LacdiNAc. This result suggests that the adhesion was mediated by a binding site different from the CRD. The blocking of integrin adhesion receptors on cells with specific antibodies revealed that the cell adhesion to the preadsorbed Gal-3 was mediated, at least partially, by β1 and αV integrins-namely α5β1, αVβ3, and αVβ1 integrins.
- MeSH
- buněčná adheze * MeSH
- endoteliální buňky pupečníkové žíly (lidské) cytologie fyziologie MeSH
- galektiny metabolismus MeSH
- integriny metabolismus MeSH
- krevní proteiny metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie fyziologie MeSH
- spoje buňka-matrix metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Crohn's disease (CD) is marked by recurring intestinal inflammation and tissue injury, often resulting in fibrostenosis and bowel obstruction, necessitating surgical intervention with high recurrence rates. To elucidate the mechanisms underlying fibrostenosis in CD, we analyzed the transcriptome of cells isolated from the transmural ileum of patients with CD, including a trio of lesions from each patient: non-affected, inflamed, and stenotic ileum samples, and compared them with samples from patients without CD. Our computational analysis revealed that profibrotic signals from a subset of monocyte-derived cells expressing CD150 induced a disease-specific fibroblast population, resulting in chronic inflammation and tissue fibrosis. The transcription factor TWIST1 was identified as a key modulator of fibroblast activation and extracellular matrix (ECM) deposition. Genetic and pharmacological inhibition of TWIST1 prevents fibroblast activation, reducing ECM production and collagen deposition. Our findings suggest that the myeloid-stromal axis may offer a promising therapeutic target to prevent fibrostenosis in CD.
- MeSH
- Crohnova nemoc * metabolismus patologie imunologie MeSH
- dospělí MeSH
- endopeptidasy metabolismus genetika MeSH
- extracelulární matrix metabolismus patologie MeSH
- fibroblasty * metabolismus patologie MeSH
- fibróza * MeSH
- ileum patologie metabolismus imunologie MeSH
- jaderné proteiny metabolismus genetika MeSH
- lidé MeSH
- mezibuněčná komunikace MeSH
- monocyty * metabolismus patologie imunologie MeSH
- myši MeSH
- receptory buněčného povrchu metabolismus genetika MeSH
- transkripční faktor Twist * metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
x
- MeSH
- Escherichia coli účinky léků MeSH
- europium MeSH
- penetrační peptidy * MeSH
- Schiffovy báze * chemická syntéza MeSH
- spektrofotometrie statistika a číselné údaje MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice statistika a číselné údaje MeSH
- terbium MeSH
- Publikační typ
- práce podpořená grantem MeSH
Volume transmission is a form of intercellular communication that does not require synapses; it is based on the diffusion of neuroactive substances across the brain extracellular space (ECS) and their binding to extrasynaptic high-affinity receptors on neurons or glia. Extracellular diffusion is restricted by the limited volume of the ECS, which is described by the ECS volume fraction α, and the presence of diffusion barriers, reflected by tortuosity λ, that are created, for example, by fine astrocytic processes or extracellular matrix (ECM) molecules. Organized astrocytic processes, ECM scaffolds or myelin sheets channel the extracellular diffusion so that it is facilitated in a certain direction, i.e. anisotropic. The diffusion properties of the ECS are profoundly influenced by various processes such as the swelling and morphological rebuilding of astrocytes during either transient or persisting physiological or pathological states, or the remodelling of the ECM in tumorous or epileptogenic tissue, during Alzheimer's disease, after enzymatic treatment or in transgenic animals. The changing diffusion properties of the ECM influence neuron-glia interaction, learning abilities, the extent of neuronal damage and even cell migration. From a clinical point of view, diffusion parameter changes occurring during pathological states could be important for diagnosis, drug delivery and treatment.
- MeSH
- anizotropie MeSH
- astrocyty patologie MeSH
- difuze MeSH
- extracelulární matrix fyziologie MeSH
- lidé MeSH
- mezibuněčná komunikace fyziologie MeSH
- nervový přenos fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
87 s. : il., tab., grafy ; 24 cm
- MeSH
- DNA MeSH
- fibroblasty MeSH
- tkáňové inhibitory metaloproteinas MeSH
- vazba proteinů MeSH
- Publikační typ
- vysokoškolské kvalifikační práce MeSH
- Konspekt
- Biochemie. Molekulární biologie. Biofyzika
- NLK Obory
- biologie
- biochemie
Intact (whole) cell matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) is an established method for biotyping in clinical microbiology as well as for revealing phenotypic shifts in cultured eukaryotic cells. Intact cell MALDI-TOF MS has recently been introduced as a quality control tool for long-term cultures of pluripotent stem cells. Despite the potential this method holds for revealing minute changes in cells, there is still a need for improving the ionization efficiency or peak reproducibility. Here we report for the first time that supplementation by fine particles of black phosphorus to the standard MALDI matrices, such as sinapinic and α-cyano-4-hydroxycinnamic acids enhance intensities of mass spectra of particular amino acids and peptides, presumably by interactions with aromatic groups within the molecules. In addition, the particles of black phosphorus induce the formation of small and regularly dispersed crystals of sinapinic acid and α-cyano-4-hydroxycinnamic acid with the analyte on a steel MALDI target plate. Patterns of mass spectra recorded from intact cells using black phosphorus-enriched matrix were more reproducible and contained peaks of higher intensities when compared to matrix without black phosphorus supplementation. In summary, enrichment of common organic matrices by black phosphorus can improve discrimination data analysis by enhancing peak intensity and reproducibility of mass spectra acquired from intact cells.
- MeSH
- aminokyseliny analýza chemie MeSH
- buněčné kultury metody MeSH
- buněčné linie MeSH
- fosfor chemie MeSH
- lidé MeSH
- lidské embryonální kmenové buňky MeSH
- peptidy analýza chemie MeSH
- reprodukovatelnost výsledků MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody normy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
HU protein is a member of nucleoid-associated proteins (NAPs) and is an important regulator of bacterial virulence, pathogenesis and survival. NAPs are mainly DNA structuring proteins that influence several molecular processes by binding the DNA. HU ́s indispensable role in DNA-related processes in bacteria was described. HU protein is a necessary bacterial transcription factor and is considered to be a virulence determinant as well. Less is known about its direct role in host-pathogen interactions. The latest studies suggest that HU protein may be secreted outside bacteria and be a part of the extracellular matrix. Moreover, HU protein can be internalized in a host cell after bacterial infection. Its role in the host cell is not well described and further studies are extremely needed. Existing results suggest the involvement of HU protein in host cell immune response modulation in bacterial favor, which can help pathogens resist host defense mechanisms. A better understanding of the HU protein's role in the host cell will help to effective treatment development.