Microscopy image segmentation
Dotaz
Zobrazit nápovědu
In our paper, we present a performance evaluation of image segmentation algorithms on microscopic image data. In spite of the existence of many algorithms for image data partitioning, there is no universal and 'the best' method yet. Moreover, images of microscopic samples can be of various character and quality which can negatively influence the performance of image segmentation algorithms. Thus, the issue of selecting suitable method for a given set of image data is of big interest. We carried out a large number of experiments with a variety of segmentation methods to evaluate the behaviour of individual approaches on the testing set of microscopic images (cross-section images taken in three different modalities from the field of art restoration). The segmentation results were assessed by several indices used for measuring the output quality of image segmentation algorithms. In the end, the benefit of segmentation combination approach is studied and applicability of achieved results on another representatives of microscopic data category - biological samples - is shown.
- MeSH
- algoritmy * MeSH
- mikroskopie * metody MeSH
- myši MeSH
- počítačové zpracování obrazu metody normy MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
Automatic detection and segmentation of biological objects in 2D and 3D image data is central for countless biomedical research questions to be answered. While many existing computational methods are used to reduce manual labeling time, there is still a huge demand for further quality improvements of automated solutions. In the natural image domain, spatial embedding-based instance segmentation methods are known to yield high-quality results, but their utility to biomedical data is largely unexplored. Here we introduce EmbedSeg, an embedding-based instance segmentation method designed to segment instances of desired objects visible in 2D or 3D biomedical image data. We apply our method to four 2D and seven 3D benchmark datasets, showing that we either match or outperform existing state-of-the-art methods. While the 2D datasets and three of the 3D datasets are well known, we have created the required training data for four new 3D datasets, which we make publicly available online. Next to performance, also usability is important for a method to be useful. Hence, EmbedSeg is fully open source (https://github.com/juglab/EmbedSeg), offering (i) tutorial notebooks to train EmbedSeg models and use them to segment object instances in new data, and (ii) a napari plugin that can also be used for training and segmentation without requiring any programming experience. We believe that this renders EmbedSeg accessible to virtually everyone who requires high-quality instance segmentations in 2D or 3D biomedical image data.
- MeSH
- algoritmy * MeSH
- lidé MeSH
- mikroskopie * metody MeSH
- počítačové zpracování obrazu metody MeSH
- zobrazování trojrozměrné metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Because of its non-destructive nature, label-free imaging is an important strategy for studying biological processes. However, routine microscopic techniques like phase contrast or DIC suffer from shadow-cast artifacts making automatic segmentation challenging. The aim of this study was to compare the segmentation efficacy of published steps of segmentation work-flow (image reconstruction, foreground segmentation, cell detection (seed-point extraction) and cell (instance) segmentation) on a dataset of the same cells from multiple contrast microscopic modalities. RESULTS: We built a collection of routines aimed at image segmentation of viable adherent cells grown on the culture dish acquired by phase contrast, differential interference contrast, Hoffman modulation contrast and quantitative phase imaging, and we performed a comprehensive comparison of available segmentation methods applicable for label-free data. We demonstrated that it is crucial to perform the image reconstruction step, enabling the use of segmentation methods originally not applicable on label-free images. Further we compared foreground segmentation methods (thresholding, feature-extraction, level-set, graph-cut, learning-based), seed-point extraction methods (Laplacian of Gaussians, radial symmetry and distance transform, iterative radial voting, maximally stable extremal region and learning-based) and single cell segmentation methods. We validated suitable set of methods for each microscopy modality and published them online. CONCLUSIONS: We demonstrate that image reconstruction step allows the use of segmentation methods not originally intended for label-free imaging. In addition to the comprehensive comparison of methods, raw and reconstructed annotated data and Matlab codes are provided.
- MeSH
- algoritmy MeSH
- frakcionace buněk metody MeSH
- lidé MeSH
- mikroskopie metody MeSH
- počítačové zpracování obrazu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Living cell segmentation from bright-field light microscopy images is challenging due to the image complexity and temporal changes in the living cells. Recently developed deep learning (DL)-based methods became popular in medical and microscopy image segmentation tasks due to their success and promising outcomes. The main objective of this paper is to develop a deep learning, U-Net-based method to segment the living cells of the HeLa line in bright-field transmitted light microscopy. To find the most suitable architecture for our datasets, a residual attention U-Net was proposed and compared with an attention and a simple U-Net architecture. The attention mechanism highlights the remarkable features and suppresses activations in the irrelevant image regions. The residual mechanism overcomes with vanishing gradient problem. The Mean-IoU score for our datasets reaches 0.9505, 0.9524, and 0.9530 for the simple, attention, and residual attention U-Net, respectively. The most accurate semantic segmentation results was achieved in the Mean-IoU and Dice metrics by applying the residual and attention mechanisms together. The watershed method applied to this best - Residual Attention - semantic segmentation result gave the segmentation with the specific information for each cell.
Biocompatibility testing of new materials is often performed in vitro by measuring the growth rate of mammalian cancer cells in time-lapse images acquired by phase contrast microscopes. The growth rate is measured by tracking cell coverage, which requires an accurate automatic segmentation method. However, cancer cells have irregular shapes that change over time, the mottled background pattern is partially visible through the cells and the images contain artifacts such as halos. We developed a novel algorithm for cell segmentation that copes with the mentioned challenges. It is based on temporal differences of consecutive images and a combination of thresholding, blurring, and morphological operations. We tested the algorithm on images of four cell types acquired by two different microscopes, evaluated the precision of segmentation against manual segmentation performed by a human operator, and finally provided comparison with other freely available methods. We propose a new, fully automated method for measuring the cell growth rate based on fitting a coverage curve with the Verhulst population model. The algorithm is fast and shows accuracy comparable with manual segmentation. Most notably it can correctly separate live from dead cells.
In this paper, a novel U-Net-based method for robust adherent cell segmentation for quantitative phase microscopy image is designed and optimised. We designed and evaluated four specific post-processing pipelines. To increase the transferability to different cell types, non-deep learning transfer with adjustable parameters is used in the post-processing step. Additionally, we proposed a self-supervised pretraining technique using nonlabelled data, which is trained to reconstruct multiple image distortions and improved the segmentation performance from 0.67 to 0.70 of object-wise intersection over union. Moreover, we publish a new dataset of manually labelled images suitable for this task together with the unlabelled data for self-supervised pretraining.
- Publikační typ
- časopisecké články MeSH
Image cytometry still faces the problem of the quality of cell image analysis results. Degradations caused by cell preparation, optics, and electronics considerably affect most 2D and 3D cell image data acquired using optical microscopy. That is why image processing algorithms applied to these data typically offer imprecise and unreliable results. As the ground truth for given image data is not available in most experiments, the outputs of different image analysis methods can be neither verified nor compared to each other. Some papers solve this problem partially with estimates of ground truth by experts in the field (biologists or physicians). However, in many cases, such a ground truth estimate is very subjective and strongly varies between different experts. To overcome these difficulties, we have created a toolbox that can generate 3D digital phantoms of specific cellular components along with their corresponding images degraded by specific optics and electronics. The user can then apply image analysis methods to such simulated image data. The analysis results (such as segmentation or measurement results) can be compared with ground truth derived from input object digital phantoms (or measurements on them). In this way, image analysis methods can be compared with each other and their quality (based on the difference from ground truth) can be computed. We have also evaluated the plausibility of the synthetic images, measured by their similarity to real image data. We have tested several similarity criteria such as visual comparison, intensity histograms, central moments, frequency analysis, entropy, and 3D Haralick features. The results indicate a high degree of similarity between real and simulated image data.
- MeSH
- algoritmy MeSH
- buněčné jadérko ultrastruktura MeSH
- buněčné jádro MeSH
- fantomy radiodiagnostické MeSH
- fluorescenční mikroskopie metody MeSH
- granulocyty cytologie MeSH
- HL-60 buňky MeSH
- lidé MeSH
- mikrosféry MeSH
- obrazová cytometrie metody MeSH
- zobrazování trojrozměrné metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
Studies of the capillary bed characterized by its length or length density are relevant in many biomedical studies. A reliable assessment of capillary length from two-dimensional (2D), thin histological sections is a rather difficult task as it requires physical cutting of such sections in randomized directions. This is often technically demanding, inefficient, or outright impossible. However, if 3D image data of the microscopic structure under investigation are available, methods of length estimation that do not require randomized physical cutting of sections may be applied. Two different rat brain regions were optically sliced by confocal microscopy and resulting 3D images processed by three types of capillary length estimation methods: (1) stereological methods based on a computer generation of isotropic uniform random virtual test probes in 3D, either in the form of spatial grids of virtual "slicer" planes or spherical probes; (2) automatic method employing a digital version of the Crofton relations using the Euler characteristic of planar sections of the binary image; and (3) interactive "tracer" method for length measurement based on a manual delineation in 3D of the axes of capillary segments. The presented methods were compared in terms of their practical applicability, efficiency, and precision.
- MeSH
- biometrie metody MeSH
- kapiláry anatomie a histologie MeSH
- konfokální mikroskopie metody MeSH
- krysa rodu rattus MeSH
- laboratorní automatizace metody MeSH
- mozek anatomie a histologie MeSH
- zobrazování trojrozměrné metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The paper describes restitution of geometrical distortions and improvement of signal-to-noise ratio of auto-fluorescence retinal images, finally aimed at segmentation and area estimation of the lipofuscin spots as one of the features to be included in glaucoma diagnosis. The main problems - geometrical and illumination incompatibility of frames in the image sequence and a non-negligible "shear" distortion in the individual frames - have been solved by the presented registration procedure. The concept and some details of the MI-based regularized registration, together with evaluation of test results form the core of the contribution.
- MeSH
- algoritmy MeSH
- financování organizované MeSH
- fluoresceinová angiografie metody MeSH
- interpretace obrazu počítačem metody MeSH
- konfokální mikroskopie metody MeSH
- lidé MeSH
- reprodukovatelnost výsledků MeSH
- retinální cévy cytologie MeSH
- retinoskopie metody MeSH
- senzitivita a specificita MeSH
- subtrakční technika MeSH
- vylepšení obrazu metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- hodnotící studie MeSH
Transmitted light holographic microscopy is particularly used for quantitative phase imaging of transparent microscopic objects such as living cells. The study of the cell is based on extraction of the dynamic data on cell behaviour from the time-lapse sequence of the phase images. However, the phase images are affected by the phase aberrations that make the analysis particularly difficult. This is because the phase deformation is prone to change during long-term experiments. Here, we present a novel algorithm for sequential processing of living cells phase images in a time-lapse sequence. The algorithm compensates for the deformation of a phase image using weighted least-squares surface fitting. Moreover, it identifies and segments the individual cells in the phase image. All these procedures are performed automatically and applied immediately after obtaining every single phase image. This property of the algorithm is important for real-time cell quantitative phase imaging and instantaneous control of the course of the experiment by playback of the recorded sequence up to actual time. Such operator's intervention is a forerunner of process automation derived from image analysis. The efficiency of the propounded algorithm is demonstrated on images of rat fibrosarcoma cells using an off-axis holographic microscope.
- MeSH
- algoritmy MeSH
- fibrosarkom patologie MeSH
- holografie metody MeSH
- interpretace obrazu počítačem metody MeSH
- krysa rodu rattus MeSH
- mikroskopie fázově kontrastní metody MeSH
- nádorové buněčné linie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH