measures of population health 8 -- 2.1.2 Health states 9 -- 2.2 Estimating the global burden of musculoskeletal Incidence and prevalence of musculoskeletal conditions 19 -- 3.1 Introduction 19 -- 3.1.1 Potential further 59 -- 4.5 Spinal disorders 60 -- 4.5.1 Model of the conditions 60 -- 4.5.2 How has the loss of health 65 -- 4.5.4 Spinal pain and disability 65 -- 4.6 Severe limb trauma 66 -- 4.6.1 Model of the conditions Measuring the health impact and economic burden of -- musculoskeletal conditions on the population 85
WHO technical report series, ISSN 0512-3054 919
x, 218 s. : tab. ; 24 cm
- MeSH
- Quality of Life MeSH
- Musculoskeletal Diseases epidemiology classification MeSH
- Cost of Illness MeSH
- Disability Evaluation MeSH
- Health Status Indicators MeSH
- Publication type
- Congress MeSH
- Conspectus
- Ortopedie. Chirurgie. Oftalmologie
- NML Fields
- ortopedie
- revmatologie
- NML Publication type
- publikace WHO
Posturální model integruje anatomicko-biomechanický a kybernetický výklad vzniku řetězení poruch funkce pohybového systému. Zásadní význam postury pro veškeré motorické aktivity a vývznamná úloha pánevního dna při jejím zajištění vysvětlují také účast pánevního dna na řetězení poruch. Z toho logicky vyplývá nutnost zaměřit diagnostickou pozornost a terapeutické působení na posturální struktury a systém, jakmile to dovolí zvládnutí bolestivých poruch v místě akutních obtíží. Pochopení základních kineziologických principů řízení á funkce pohybového systému jako celku k tomu poskytuje teoretický základ.
The postural model integrates the anatomical, biomechanical and cybernetic interpretation of the development of chaining of impaired functions of the locomotor system. The fundamental importance of posture for all motor activities and the important role of the pelvic diaphragm in ensuring it explain also the frequent participation of the pelvic diaphragm in chaining of disorders. From this ensues the necessity to focus diagnostic attention and therapeutic action on postural structures and the system as soon as control of acute painful disorders of the site of complaints permits. Understanding of basic kinesiological principles of the control and function of the locomotor system as a whole serves as a theoretical basis.
BACKGROUND: Variations observed in biomechanical studies might be attributed to errors made by operators during the construction of musculoskeletal models, rather than being solely attributed to patient-specific geometry. RESEARCH QUESTION: What is the impact of operator errors on the construction of musculoskeletal models, and how does it affect the estimation of muscle moment arms and hip joint reaction forces? METHODS: Thirteen independent operators participated in defining the muscle model, while a single operator performed 13 repetitions to define the muscle model based on 3D bone geometry. For each model, the muscle moment arms relative to the hip joint center of rotation was evaluated. Additionally, the hip joint reaction force during one-legged stance was assessed using static inverse optimization. RESULTS: The results indicated high levels of consistency, as evidenced by the intra- rater and inter-rater agreement measured by the Intraclass Correlation Coefficient (ICC), which yielded values of 0.95 and 0.99, respectively. However, the estimated muscle moment arms exhibited an error of up to 16 mm compared to the reference musculoskeletal model. It was found that muscles attached to prominent anatomical landmarks were specified with greater accuracy than those attached over larger areas. Furthermore, the variability in estimated moment arms contributed to variations of up to 12% in the hip joint reaction forces. SIGNIFICANCE: Both moment arm and muscle force demonstrated significantly lower variability when assessed by a single operator, suggesting the preference for employing a single operator in the creation of musculoskeletal models for clinical biomechanical studies.
- MeSH
- Models, Biological MeSH
- Biomechanical Phenomena MeSH
- Muscle, Skeletal * physiology MeSH
- Hip Joint * physiology MeSH
- Humans MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Background: Hip fractures are a major cause for disability in patients. They require immediate attention as they could otherwise cause death. Hip fractures are almost always treated with surgery by implantation. Implants are of various types accounting for the many variations in hip fractures. Objectives: This paper presents the design and analysis of a hip implant using Finite element analysis. Fracture conditions are determined and the optimal design of the implant is obtained for improving healthcare and patient safety. Methods: Anthropometric parameters of the human femur bone are collected from a particular age group. These are then used to obtain a CAD model of the bone using CATIA. The standard Charnley hip implant, used in total hip replacement surgery is also modeled. The proposed models are analyzed using ANSYS software by assigning appropriate material properties to the bone and implant. The stress distribution is observed when loads corresponding to normal gait conditions are applied. The load at which fracture occurs is then determined experimentally. Results: Based on the analysis results of the modeled bone, the implant is optimized by varying the base cross section, the bio-materials used, and the design parameters so that, its stress response mimics that of the actual bone. It is found that the model no 2 as in Table 6 with head diameter 28mm, neck diameter 10mm, neck angle 128 degrees has minimum strain at the neck region with a value of 0.65 and is found to be suitable for implant design. Results show that initiation of fracture in the implant occurs at 2000N and complete fracture occurs at 2400N. Conclusions: The 3D models are very useful in simulation of bone fractures and internal fixations with implants. In this work, the hip joint and implant model, developed in CATIA software, help to understand how these structures adapt to external forces disturbances [15]. This will help the doctors to chose the optimal implant for a particular patient. This leads to greater accuracy and patient specificity.
- MeSH
- Anthropometry methods MeSH
- Hip Fractures * surgery therapy MeSH
- Humans MeSH
- Musculoskeletal System * anatomy & histology surgery injuries MeSH
- Orthopedic Procedures methods instrumentation trends MeSH
- Computers MeSH
- Prostheses and Implants * MeSH
- Statistics as Topic MeSH
- Imaging, Three-Dimensional * methods instrumentation utilization MeSH
- Check Tag
- Humans MeSH
Lidská chůze je dynamický rys, který je složitý a unikátní pro každou osobu. Její analýze je věnováno stále velké úsilí, neboť porozumnění faktorům, které ji ovlivňují, a jejich vzájemným závislostem, napomáhá k diagnóze i léčení abnormalit chůze. Nalezení příčin postižení a funkčních omezení může vést k optimalizaci rehabilitací či simulaci výsledků chirurgického zákroku. Tento článek se zabývá právě přehledem přístupů k modelování chůze. Obsahuje klasifikaci modelů dle různých kritérií a zaměřuje se jak na širokou škálu minimalistických modelů založených na jednoduchém fyzikálním modelu obráceného kyvadla, tak i komplexní analytické modely, reflektujících skutečnou stavbu dolních končetin.
Human gait is dynamic feature, which is unique, complex and difficult to mimic. Understanding of factors that affect it and their mutual dependencies, helps to diagnose and treat abnormalities of gait. Defining the causes of impairment and functional limitation can lead to optimization of rehabilitation treatment and simulation of surgical intervention. Therefore, gait modeling is devoted great effort. This article deals with an overview of approaches to gait modeling. It contains classes accroding to various criteria. Further, review of minimalistic physics-based models and complex analytical models is included.
Schopnost odhadnout jaká svalová dysbalance, případně jiné působení je příčinou změn klidové pozice lopatky by výrazně napomohla při interpretaci výsledků Moiré vyšetření topografie trupu, které běžně probíhá v naší laboratoři biomechaniky. Při řešení úlohy vycházíme z předpokladu, že poloha lopatky vzhledem k hrudníku je dána výsledným silovým působením od aktivních (svaly) i pasivních (tíhové síly, třecí a odporové síly ostatních tkání, vazivový aparát aj.) struktur.
The geometrical representation of muscles in computational models of the musculoskeletal system typically consists of a series of line segments. These muscle anatomies are based on measurements from a limited number of cadaveric studies that recently have been used as atlases for creating subject-specific models from medical images, so potentially restricting the options for personalisation and assessment of muscle geometrical models. To overcome this methodological limitation, we propose a novel, completely automated technique that, from a surface geometry of a skeletal muscle and its attachment areas, can generate an arbitrary number of lines of action (fibres) composed by a user-defined number of straight-line segments. These fibres can be included in standard musculoskeletal models and used in biomechanical simulations. This methodology was applied to the surfaces of four muscles surrounding the hip joint (iliacus, psoas, gluteus maximus and gluteus medius), segmented on magnetic resonance imaging scans from a cadaveric dataset, for which highly discretised muscle representations were created and used to simulate functional tasks. The fibres' moment arms were validated against measurements and models of the same muscles from the literature with promising outcomes. The proposed approach is expected to improve the anatomical representation of skeletal muscles in personalised biomechanical models and finite element applications.
- MeSH
- Models, Biological * MeSH
- Biomechanical Phenomena MeSH
- Muscle, Skeletal * diagnostic imaging physiology MeSH
- Hip Joint * diagnostic imaging physiology MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Cadaver MeSH
- Tomography, X-Ray Computed MeSH
- Patient-Specific Modeling * MeSH
- Aged, 80 and over MeSH
- Check Tag
- Humans MeSH
- Aged, 80 and over MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
[1st ed.] XV, 597 s. : obr., tab., grafy ; 26 cm
- MeSH
- Models, Biological MeSH
- Biomechanical Phenomena MeSH
- Ligaments surgery MeSH
- Knee Injuries rehabilitation MeSH
- Synovial Membrane physiopathology MeSH
- Publication type
- Congress MeSH
- Collected Work MeSH
- Conspectus
- Ortopedie. Chirurgie. Oftalmologie
- NML Fields
- ortopedie
- biologie
American journal of medicine, ISSN 0002-9343 Supplement Vol. 103. 6A
85S s. : il. ; 30 cm