NGS applications Dotaz Zobrazit nápovědu
Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
nestr.
Targeted next gene sequencing enables to analyze hundreds of cancer predisposition genes in high-risk individuals. Identification of causal mutation has critical prognostic a predictive significance for the patient and their relatives. Supported by previous grant AZV 16-29959A (2016-19), we established a consortium of 9 Czech clinical laboratories unifying cancer predisposition analysis by CZECANCA (Czech cancer panel for clinical application) approach, developed joined database of over 6200 genotypes of analyzed patients, analyzed over 700 controls enabling to identify population-specific genetic background and prepared model systems for in vitro analyses of variants of uncertain significance in several genes. Proposed project aims to continue in these activities to comprehensively characterize genetic architecture of cancer predisposition in patients with various cancers in the Czech Republic, to identify clinically important population-specific mutations, and to elucidate cancer risks associated with mutations in poorly characterized predisposition genes.
Cílené sekvenování nové generace umožňuje analýzu stovek nádorových predispozičních genů u onkologicky nemocných s podezřením na výskyt dědičné formy onemocnění. Identifikace příčinných mutací má zásadní prognostický, ale i prediktivní význam u pacientů a jejich příbuzných. S podporou předchozího projektu AZV 16-29959A (2016-19) jsme ustanovili konsorcium 9 laboratoří unifikující vyšetření nádorové predispozice pomocí CZECANCA panelu, vytvořili jsme společnou databázi genotypů analyzovaných jednotným bioinformatickým postupem u >6200 vysoce rizikových onkologických pacientů, provedli jsme analýzu >700 vzorků nenádorových kontrol identifikující genetické pozadí v ČR a připravili jsme in vitro modelové systémy pro hodnocení variant nejasného významu. Cílem navazujícího projektu je pokračování těchto aktivit, umožňující zevrubnou charakterizaci architektury nádorové predispozice u různých typů nádorů v ČR, určení klinické významnosti populačně specifických variant, identifikaci rizik u doposud nejasně charakterizovaných predispozičních genů s cílem zlepšení péče o vysoce rizikové osoby.
- Klíčová slova
- NGS, NGS, bioinformatika, bioinformatics, nádorová predispozice, cancer predisposition, dědičné nádory, funkční analýzy, hereditary tumors, functional analyses,
- NLK Publikační typ
- závěrečné zprávy o řešení grantu AZV MZ ČR
Assessment of clonality, marker identification and measurement of minimal residual disease (MRD) of immunoglobulin (IG) and T cell receptor (TR) gene rearrangements in lymphoid neoplasms using next-generation sequencing (NGS) is currently under intensive development for use in clinical diagnostics. So far, however, there is a lack of suitable quality control (QC) options with regard to standardisation and quality metrics to ensure robust clinical application of such approaches. The EuroClonality-NGS Working Group has therefore established two types of QCs to accompany the NGS-based IG/TR assays. First, a central polytarget QC (cPT-QC) is used to monitor the primer performance of each of the EuroClonality multiplex NGS assays; second, a standardised human cell line-based DNA control is spiked into each patient DNA sample to work as a central in-tube QC and calibrator for MRD quantification (cIT-QC). Having integrated those two reference standards in the ARResT/Interrogate bioinformatic platform, EuroClonality-NGS provides a complete protocol for standardised IG/TR gene rearrangement analysis by NGS with high reproducibility, accuracy and precision for valid marker identification and quantification in diagnostics of lymphoid malignancies.
- MeSH
- genetické markery genetika MeSH
- genová přestavba genetika MeSH
- imunoglobuliny genetika MeSH
- lidé MeSH
- receptory antigenů T-buněk genetika MeSH
- reprodukovatelnost výsledků MeSH
- reziduální nádor genetika MeSH
- řízení kvality MeSH
- výpočetní biologie metody MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The 17th International HLA and Immunogenetics Workshop (IHIW) organizers conducted a Pilot Study (PS) in which 13 laboratories (15 groups) participated to assess the performance of the various sequencing library preparation protocols, NGS platforms and software in use prior to the workshop. The organizers sent 50 cell lines to each of the 15 groups, scored the 15 independently generated sets of NGS HLA genotyping data, and generated "consensus" HLA genotypes for each of the 50 cell lines. Proficiency Testing (PT) was subsequently organized using four sets of 24 cell lines, selected from 48 of 50 PS cell lines, to validate the quality of NGS HLA typing data from the 34 participating IHIW laboratories. Completion of the PT program with a minimum score of 95% concordance at the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 loci satisfied the requirements to submit NGS HLA typing data for the 17th IHIW projects. Together, these PS and PT efforts constituted the 17th IHIW Quality Control project. Overall PT concordance rates for HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRB1, HLA-DRB3, HLA-DRB4 and HLA-DRB5 were 98.1%, 97.0% and 98.1%, 99.0%, 98.6%, 98.8%, 97.6%, 96.0%, 99.1%, 90.0% and 91.7%, respectively. Across all loci, the majority of the discordance was due to allele dropout. The high cost of NGS HLA genotyping per experiment likely prevented the retyping of initially failed HLA loci. Despite the high HLA genotype concordance rates of the software, there remains room for improvement in the assembly of more accurate consensus DNA sequences by NGS HLA genotyping software.
- MeSH
- alely MeSH
- genotyp * MeSH
- HLA antigeny genetika MeSH
- imunogenetika * MeSH
- konsensuální konference jako téma MeSH
- lidé MeSH
- mezinárodní spolupráce MeSH
- pilotní projekty MeSH
- řízení kvality MeSH
- software MeSH
- testování histokompatibility metody MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Next generation sequencing (NGS) technology allows laboratories to investigate virome composition in clinical and environmental samples in a culture-independent way. There is a need for bioinformatic tools capable of parallel processing of virome sequencing data by exactly identical methods: this is especially important in studies of multifactorial diseases, or in parallel comparison of laboratory protocols. RESULTS: We have developed a web-based application allowing direct upload of sequences from multiple virome samples using custom parameters. The samples are then processed in parallel using an identical protocol, and can be easily reanalyzed. The pipeline performs de-novo assembly, taxonomic classification of viruses as well as sample analyses based on user-defined grouping categories. Tables of virus abundance are produced from cross-validation by remapping the sequencing reads to a union of all observed reference viruses. In addition, read sets and reports are created after processing unmapped reads against known human and bacterial ribosome references. Secured interactive results are dynamically plotted with population and diversity charts, clustered heatmaps and a sortable and searchable abundance table. CONCLUSIONS: The Vipie web application is a unique tool for multi-sample metagenomic analysis of viral data, producing searchable hits tables, interactive population maps, alpha diversity measures and clustered heatmaps that are grouped in applicable custom sample categories. Known references such as human genome and bacterial ribosomal genes are optionally removed from unmapped ('dark matter') reads. Secured results are accessible and shareable on modern browsers. Vipie is a freely available web-based tool whose code is open source.
- MeSH
- genetická variace MeSH
- genomika metody MeSH
- internet * MeSH
- lidé MeSH
- mikrobiota genetika MeSH
- software * MeSH
- viry genetika MeSH
- vysoce účinné nukleotidové sekvenování * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Motivation: The study of immunoglobulins and T cell receptors using next-generation sequencing has finally allowed exploring immune repertoires and responses in their immense variability and complexity. Unsurprisingly, their analysis and interpretation is a highly convoluted task. Results: We thus implemented ARResT/Interrogate, a web-based, interactive application. It can organize and filter large amounts of immunogenetic data by numerous criteria, calculate several relevant statistics, and present results in the form of multiple interconnected visualizations. Availability and Implementation: ARResT/Interrogate is implemented primarily in R, and is freely available at http://bat.infspire.org/arrest/interrogate/ Contact: nikos.darzentas@gmail.com Supplementary Information: Supplementary data are available at Bioinformatics online.
- MeSH
- genetická variace MeSH
- imunogenetika metody MeSH
- imunoglobuliny genetika MeSH
- lidé MeSH
- receptory antigenů T-buněk genetika metabolismus MeSH
- software * MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Amplicon-based next-generation sequencing (NGS) of immunoglobulin (IG) and T-cell receptor (TR) gene rearrangements for clonality assessment, marker identification and quantification of minimal residual disease (MRD) in lymphoid neoplasms has been the focus of intense research, development and application. However, standardization and validation in a scientifically controlled multicentre setting is still lacking. Therefore, IG/TR assay development and design, including bioinformatics, was performed within the EuroClonality-NGS working group and validated for MRD marker identification in acute lymphoblastic leukaemia (ALL). Five EuroMRD ALL reference laboratories performed IG/TR NGS in 50 diagnostic ALL samples, and compared results with those generated through routine IG/TR Sanger sequencing. A central polytarget quality control (cPT-QC) was used to monitor primer performance, and a central in-tube quality control (cIT-QC) was spiked into each sample as a library-specific quality control and calibrator. NGS identified 259 (average 5.2/sample, range 0-14) clonal sequences vs. Sanger-sequencing 248 (average 5.0/sample, range 0-14). NGS primers covered possible IG/TR rearrangement types more completely compared with local multiplex PCR sets and enabled sequencing of bi-allelic rearrangements and weak PCR products. The cPT-QC showed high reproducibility across all laboratories. These validated and reproducible quality-controlled EuroClonality-NGS assays can be used for standardized NGS-based identification of IG/TR markers in lymphoid malignancies.
- MeSH
- akutní lymfatická leukemie genetika MeSH
- genetické markery genetika MeSH
- genová přestavba T-lymfocytů genetika MeSH
- geny pro imunoglobuliny genetika MeSH
- geny TcR genetika MeSH
- imunoglobuliny genetika MeSH
- lidé MeSH
- receptory antigenů T-buněk genetika MeSH
- referenční standardy MeSH
- rekombinace genetická genetika MeSH
- reprodukovatelnost výsledků MeSH
- reziduální nádor genetika MeSH
- výpočetní biologie metody MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Molecular profiling of tumor samples has acquired importance in cancer research, but currently also plays an important role in the clinical management of cancer patients. Rapid identification of genomic aberrations improves diagnosis, prognosis and effective therapy selection. This can be attributed mainly to the development of next-generation sequencing (NGS) methods, especially targeted DNA panels. Such panels enable a relatively inexpensive and rapid analysis of various aberrations with clinical impact specific to particular diagnoses. In this review, we discuss the experimental approaches and bioinformatic strategies available for the development of an NGS panel for a reliable analysis of selected biomarkers. Compliance with defined analytical steps is crucial to ensure accurate and reproducible results. In addition, a careful validation procedure has to be performed before the application of NGS targeted assays in routine clinical practice. With more focus on bioinformatics, we emphasize the need for thorough pipeline validation and management in relation to the particular experimental setting as an integral part of the NGS method establishment. A robust and reproducible bioinformatic analysis running on powerful machines is essential for proper detection of genomic variants in clinical settings since distinguishing between experimental noise and real biological variants is fundamental. This review summarizes state-of-the-art bioinformatic solutions for careful detection of the SNV/Indels and CNVs for targeted sequencing resulting in translation of sequencing data into clinically relevant information. Finally, we share our experience with the development of a custom targeted NGS panel for an integrated analysis of biomarkers in lymphoproliferative disorders.
- Publikační typ
- časopisecké články MeSH
Analysis and interpretation of Ig and TCR gene rearrangements in the conventional, low-throughput way have their limitations in terms of resolution, coverage, and biases. With the advent of high-throughput, next-generation sequencing (NGS) technologies, a deeper analysis of Ig and/or TCR (IG/TR) gene rearrangements is now within reach, which impacts on all main applications of IG/TR immunogenetic analysis. To bridge the generation gap from low- to high-throughput analysis, the EuroClonality-NGS Consortium has been formed, with the main objectives to develop, standardize, and validate the entire workflow of IG/TR NGS assays for 1) clonality assessment, 2) minimal residual disease detection, and 3) repertoire analysis. This concerns the preanalytical (sample preparation, target choice), analytical (amplification, NGS), and postanalytical (immunoinformatics) phases. Here we critically discuss pitfalls and challenges of IG/TR NGS methodology and its applications in hemato-oncology and immunology.
- MeSH
- alely MeSH
- genová přestavba MeSH
- geny pro imunoglobuliny MeSH
- geny TcR genetika MeSH
- hematologie metody MeSH
- imunogenetika metody normy MeSH
- imunologické techniky * MeSH
- lidé MeSH
- výpočetní biologie metody MeSH
- vysoce účinné nukleotidové sekvenování * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Carriers of mutations in hereditary cancer predisposition genes represent a small but clinically important subgroup of oncology patients. The identification of causal germline mutations determines follow-up management, treatment options and genetic counselling in patients' families. Targeted next-generation sequencing-based analyses using cancer-specific panels in high-risk individuals have been rapidly adopted by diagnostic laboratories. While the use of diagnosis-specific panels is straightforward in typical cases, individuals with unusual phenotypes from families with overlapping criteria require multiple panel testing. Moreover, narrow gene panels are limited by our currently incomplete knowledge about possible genetic dispositions. METHODS: We have designed a multi-gene panel called CZECANCA (CZEch CAncer paNel for Clinical Application) for a sequencing analysis of 219 cancer-susceptibility and candidate predisposition genes associated with frequent hereditary cancers. RESULTS: The bioanalytical and bioinformatics pipeline was validated on a set of internal and commercially available DNA controls showing high coverage uniformity, sensitivity, specificity and accuracy. The panel demonstrates a reliable detection of both single nucleotide and copy number variants. Inter-laboratory, intra- and inter-run replicates confirmed the robustness of our approach. CONCLUSION: The objective of CZECANCA is a nationwide consolidation of cancer-predisposition genetic testing across various clinical indications with savings in costs, human labor and turnaround time. Moreover, the unified diagnostics will enable the integration and analysis of genotypes with associated phenotypes in a national database improving the clinical interpretation of variants.
- MeSH
- dědičné nádorové syndromy genetika MeSH
- genetická predispozice k nemoci MeSH
- genetické asociační studie MeSH
- genetické testování MeSH
- lidé MeSH
- mutace INDEL MeSH
- mutace MeSH
- nádorové biomarkery * MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- variabilita počtu kopií segmentů DNA MeSH
- výpočetní biologie metody MeSH
- vysoce účinné nukleotidové sekvenování * metody normy MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The appearance of somaclonal variability induced by in vitro cultivation is relatively frequent and can, in some cases, provide a valuable source of new genetic variation for crop improvement. The cause of this phenomenon remains unknown; however, there are a number of reports suggesting that epigenetics, including DNA methylations, are an important factor. In addition to the non-heritable DNA methylation changes caused by transient and reversible stress-responsive gene regulation, recent evidence supports the existence of mitotically and meiotically inherited changes. The induction of phenotypes via stable DNA methylation changes has occasionally great economical value; however, very little is known about the genetic or molecular basis of these phenotypes. We used a novel approach consisting of a standard MSAP analysis followed by deep amplicon sequencing to better understand this phenomenon. Our models included two wheat genotypes, and their somaclones induced using in vitro cultivation with a changed heritable phenotype (shortened stem height and silenced high molecular weight glutenin). Using this novel procedure, we obtained information on the dissimilarity of DNA methylation landscapes between the standard cultivar and its respective somaclones, and we extracted the sequences and genome regions that were differentially methylated between subjects. Transposable elements were identified as the most likely factor for producing changes in somaclone properties. In summary, the novel approach of combining MSAP and NGS is relatively easy and widely applicable, which is a rather unique feature compared with the currently available techniques in the epigenetics field.