The family of PIM serine/threonine kinases includes three highly conserved oncogenes, PIM1, PIM2, and PIM3, which regulate multiple prosurvival pathways and cooperate with other oncogenes such as MYC. Recent genomic CRISPR-Cas9 screens further highlighted oncogenic functions of PIMs in diffuse large B-cell lymphoma (DLBCL) cells, justifying the development of small-molecule PIM inhibitors and therapeutic targeting of PIM kinases in lymphomas. However, detailed consequences of PIM inhibition in DLBCL remain undefined. Using chemical and genetic PIM blockade, we comprehensively characterized PIM kinase-associated prosurvival functions in DLBCL and the mechanisms of PIM inhibition-induced toxicity. Treatment of DLBCL cells with SEL24/MEN1703, a pan-PIM inhibitor in clinical development, decreased BAD phosphorylation and cap-dependent protein translation, reduced MCL1 expression, and induced apoptosis. PIM kinases were tightly coexpressed with MYC in diagnostic DLBCL biopsies, and PIM inhibition in cell lines and patient-derived primary lymphoma cells decreased MYC levels as well as expression of multiple MYC-dependent genes, including PLK1. Chemical and genetic PIM inhibition upregulated surface CD20 levels in an MYC-dependent fashion. Consistently, MEN1703 and other clinically available pan-PIM inhibitors synergized with the anti-CD20 monoclonal antibody rituximab in vitro, increasing complement-dependent cytotoxicity and antibody-mediated phagocytosis. Combined treatment with PIM inhibitor and rituximab suppressed tumor growth in lymphoma xenografts more efficiently than either drug alone. Taken together, these results show that targeting PIM in DLBCL exhibits pleiotropic effects that combine direct cytotoxicity with potentiated susceptibility to anti-CD20 antibodies, justifying further clinical development of such combinatorial strategies. SIGNIFICANCE: These findings demonstrate that inhibition of PIM induces DLBCL cell death via MYC-dependent and -independent mechanisms and enhances the therapeutic response to anti-CD20 antibodies by increasing CD20 expression.
- MeSH
- Antigens, CD20 MeSH
- Apoptosis MeSH
- Lymphoma, Large B-Cell, Diffuse drug therapy genetics metabolism pathology MeSH
- Phosphorylation MeSH
- Protein Kinase Inhibitors pharmacology MeSH
- Humans MeSH
- Mice, SCID MeSH
- Mice MeSH
- Tumor Cells, Cultured MeSH
- Cell Proliferation MeSH
- Antineoplastic Agents, Immunological pharmacology MeSH
- Proto-Oncogene Proteins c-myc genetics metabolism MeSH
- Proto-Oncogene Proteins c-pim-1 antagonists & inhibitors MeSH
- Gene Expression Regulation, Neoplastic drug effects MeSH
- Rituximab pharmacology MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Pancreatic ductal adenocarcinoma (PDAC) is a growing medical problem associated with extensive metastasis and high mortality. Intraperitoneal (IP) administration of therapeutics promises to help the treatment of cancers originated from organs in the peritoneal cavity. In this study, we evaluated how physicochemical properties of self-assembled polycation/siRNA nanoparticles affect their IP delivery efficacy in an orthotopic PDAC model. We have examined the effect of covalent polycation modification with lipophobic and hydrophobic tetrafluoro-p-toluic acid (TFTA), hydrophobic cholesterol, and hydrophilic poly(ethylene glycol) respectively. The surface charge of the three different nanoparticles was also modulated by coating the surface with serum albumin. We found that positively charged fluorine-containing particles with lipophobic properties based on a mixture of positively charged polymeric AMD3100 CXCR4 antagonist (PAMD) and PAMD modified with TFTA (mPAMD-TFTA)/siRNA displayed the best cell uptake and transfection efficacy in vitro. Biodistribution evaluation of the nanoparticles in a syngeneic orthotopic PDAC model revealed that the fluorine-containing formulation also achieved the highest PDAC tumor accumulation after IP administration. With a combination of CXCR4 inhibition by PAMD and PLK1 downregulation by siRNA, the treatment with mPAMD-TFTA/siPLK1 showed significant inhibition of both primary and metastatic PDAC tumors. Overall, our study provides insights into and guides the design of the nanoparticles for improved IP delivery of siRNA in PDAC.
- MeSH
- Halogenation * MeSH
- Humans MeSH
- RNA, Small Interfering MeSH
- Cell Line, Tumor MeSH
- Pancreatic Neoplasms * drug therapy MeSH
- Polyelectrolytes MeSH
- Tissue Distribution MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Cyclin A2 is a key regulator of the cell cycle, implicated both in DNA replication and mitotic entry. Cyclin A2 participates in feedback loops that activate mitotic kinases in G2 phase, but why active Cyclin A2-CDK2 during the S phase does not trigger mitotic kinase activation remains unclear. Here, we describe a change in localisation of Cyclin A2 from being only nuclear to both nuclear and cytoplasmic at the S/G2 border. We find that Cyclin A2-CDK2 can activate the mitotic kinase PLK1 through phosphorylation of Bora, and that only cytoplasmic Cyclin A2 interacts with Bora and PLK1. Expression of predominately cytoplasmic Cyclin A2 or phospho-mimicking PLK1 T210D can partially rescue a G2 arrest caused by Cyclin A2 depletion. Cytoplasmic presence of Cyclin A2 is restricted by p21, in particular after DNA damage. Cyclin A2 chromatin association during DNA replication and additional mechanisms contribute to Cyclin A2 localisation change in the G2 phase. We find no evidence that such mechanisms involve G2 feedback loops and suggest that cytoplasmic appearance of Cyclin A2 at the S/G2 transition functions as a trigger for mitotic kinase activation.
- MeSH
- Enzyme Activation genetics MeSH
- Cell Nucleus metabolism MeSH
- Chromatin metabolism MeSH
- Cyclin A2 genetics metabolism MeSH
- Cyclin-Dependent Kinase 2 deficiency genetics MeSH
- Cytoplasm metabolism MeSH
- Phosphorylation genetics MeSH
- G2 Phase genetics MeSH
- HeLa Cells MeSH
- Humans MeSH
- Mitosis genetics MeSH
- DNA Damage genetics MeSH
- Protein Serine-Threonine Kinases metabolism MeSH
- CDC2 Protein Kinase deficiency genetics MeSH
- Cell Cycle Proteins metabolism MeSH
- Proto-Oncogene Proteins metabolism MeSH
- S Phase genetics MeSH
- Signal Transduction genetics MeSH
- Transfection MeSH
- Protein Binding MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Polo-like kinases play essential roles in cell cycle control and mitosis. In contrast to other members of this kinase family, PLK3 has been reported to be activated upon cellular stress including DNA damage, hypoxia and osmotic stress. Here we knocked out PLK3 in human non-transformed RPE cells using CRISPR/Cas9-mediated gene editing. Surprisingly, we find that loss of PLK3 does not impair stabilization of HIF1α after hypoxia, phosphorylation of the c-Jun after osmotic stress and dynamics of DNA damage response after exposure to ionizing radiation. Similarly, RNAi-mediated depletion of PLK3 did not impair stress response in human transformed cell lines. Exposure of cells to various forms of stress also did not affect kinase activity of purified EGFP-PLK3. We conclude that PLK3 is largely dispensable for stress response in human cells. Using mass spectrometry, we identify protein phosphatase 6 as a new interacting partner of PLK3. Polo box domain of PLK3 mediates the interaction with the PP6 complex. Finally, we find that PLK3 is phosphorylated at Thr219 in the T-loop and that PP6 constantly dephosphorylates this residue. However, in contrast to PLK1, phosphorylation of Thr219 does not upregulate enzymatic activity of PLK3, suggesting that activation of both kinases is regulated by distinct mechanisms.
BACKGROUND: Dishevelled (DVL) is an essential component of the Wnt signaling cascades. Function of DVL is controlled by phosphorylation but the molecular details are missing. DVL3 contains 131 serines and threonines whose phosphorylation generates complex barcodes underlying diverse DVL3 functions. In order to dissect the role of DVL phosphorylation we analyzed the phosphorylation of human DVL3 induced by previously reported (CK1ε, NEK2, PLK1, CK2α, RIPK4, PKCδ) and newly identified (TTBK2, Aurora A) DVL kinases. METHODS: Shotgun proteomics including TiO2 enrichment of phosphorylated peptides followed by liquid chromatography tandem mass spectrometry on immunoprecipitates from HEK293T cells was used to identify and quantify phosphorylation of DVL3 protein induced by 8 kinases. Functional characterization was performed by in-cell analysis of phospho-mimicking/non-phosphorylatable DVL3 mutants and supported by FRET assays and NMR spectroscopy. RESULTS: We used quantitative mass spectrometry and calculated site occupancies and quantified phosphorylation of > 80 residues. Functional validation demonstrated the importance of CK1ε-induced phosphorylation of S268 and S311 for Wnt-3a-induced β-catenin activation. S630-643 cluster phosphorylation by CK1, NEK2 or TTBK2 is essential for even subcellular distribution of DVL3 when induced by CK1 and TTBK2 but not by NEK2. Further investigation showed that NEK2 utilizes a different mechanism to promote even localization of DVL3. NEK2 triggered phosphorylation of PDZ domain at S263 and S280 prevents binding of DVL C-terminus to PDZ and promotes an open conformation of DVL3 that is more prone to even subcellular localization. CONCLUSIONS: We identify unique phosphorylation barcodes associated with DVL function. Our data provide an example of functional synergy between phosphorylation in structured domains and unstructured IDRs that together dictate the biological outcome. Video Abtract.
- MeSH
- Phosphorylation MeSH
- HEK293 Cells MeSH
- Mass Spectrometry MeSH
- NIMA-Related Kinases metabolism MeSH
- Protein Conformation MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Dishevelled Proteins chemistry metabolism MeSH
- Signal Transduction MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
As the extent of centrosome abnormalities in chronic myeloid leukemia (CML) correlates with disease stage and karyotype alterations, abnormal expression of genes encoding centrosomal proteins may be an early prognostic marker of disease progression. In the present study, we showed that in comparison with healthy controls, the expression of four centrosomal genes (AURKA, HMMR, PLK1 and ESPL1) in the peripheral blood of CML patients was significantly enhanced at diagnosis and decreased to the basal level in most patients treated with imatinib mesylate for three months. In the remaining patients (17%), this decrease was delayed and was associated with worse overall survival. The detection of antibodies in sera showed that patients with higher overall antibody production had superior outcomes in terms of achieving major molecular response and failure-free survival. These data suggest that the dynamics of the response of centrosomal genes should be considered as a risk factor and immunity against centrosomal proteins may contribute to treatment response.
- MeSH
- Centrosome immunology metabolism MeSH
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive genetics immunology MeSH
- Adult MeSH
- Immunity, Humoral * genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Neoplasm Proteins genetics immunology MeSH
- Cell Cycle Proteins genetics immunology MeSH
- Gene Expression Regulation, Leukemic MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Case-Control Studies MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
After DNA damage, the cell cycle is arrested to avoid propagation of mutations. Arrest in G2 phase is initiated by ATM-/ATR-dependent signaling that inhibits mitosis-promoting kinases such as Plk1. At the same time, Plk1 can counteract ATR-dependent signaling and is required for eventual resumption of the cell cycle. However, what determines when Plk1 activity can resume remains unclear. Here, we use FRET-based reporters to show that a global spread of ATM activity on chromatin and phosphorylation of ATM targets including KAP1 control Plk1 re-activation. These phosphorylations are rapidly counteracted by the chromatin-bound phosphatase Wip1, allowing cell cycle restart despite persistent ATM activity present at DNA lesions. Combining experimental data and mathematical modeling, we propose a model for how the minimal duration of cell cycle arrest is controlled. Our model shows how cell cycle restart can occur before completion of DNA repair and suggests a mechanism for checkpoint adaptation in human cells.
- MeSH
- Ataxia Telangiectasia Mutated Proteins metabolism MeSH
- Models, Biological MeSH
- Cell Line MeSH
- Chromatin metabolism MeSH
- Phosphorylation MeSH
- G2 Phase Cell Cycle Checkpoints * MeSH
- Humans MeSH
- Protein Interaction Mapping MeSH
- Protein Processing, Post-Translational MeSH
- Protein Serine-Threonine Kinases metabolism MeSH
- Protein Phosphatase 2C metabolism MeSH
- Cell Cycle Proteins metabolism MeSH
- Proto-Oncogene Proteins metabolism MeSH
- Repressor Proteins metabolism MeSH
- Fluorescence Resonance Energy Transfer MeSH
- Models, Theoretical MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Fully grown mammalian oocytes utilize transcripts synthetized and stored during earlier development. RNA localization followed by a local translation is a mechanism responsible for the regulation of spatial and temporal gene expression. Here we show that the mouse oocyte contains 3 forms of cap-dependent translational repressor expressed on the mRNA level: 4E-BP1, 4E-BP2 and 4E-BP3. However, only 4E-BP1 is present as a protein in oocytes, it becomes inactivated by phosphorylation after nuclear envelope breakdown and as such it promotes cap-dependent translation after NEBD. Phosphorylation of 4E-BP1 can be seen in the oocytes after resumption of meiosis but it is not detected in the surrounding cumulus cells, indicating that 4E-BP1 promotes translation at a specific cell cycle stage. Our immunofluorescence analyses of 4E-BP1 in oocytes during meiosis I showed an even localization of global 4E-BP1, as well as of its 4E-BP1 (Thr37/46) phosphorylated form. On the other hand, 4E-BP1 phosphorylated on Ser65 is localized at the spindle poles, and 4E-BP1 phosphorylated on Thr70 localizes on the spindle. We further show that the main positive regulators of 4E-BP1 phosphorylation after NEBD are mTOR and CDK1 kinases, but not PLK1 kinase. CDK1 exerts its activity toward 4E-BP1 phosphorylation via phosphorylation and activation of mTOR. Moreover, both CDK1 and phosphorylated mTOR co-localize with 4E-BP1 phosphorylated on Thr70 on the spindle at the onset of meiotic resumption. Expression of the dominant negative 4E-BP1 mutant adversely affects translation and results in spindle abnormality. Taken together, our results show that the phosphorylation of 4E-BP1 promotes translation at the onset of meiosis to support the spindle assembly and suggest an important role of CDK1 and mTOR kinases in this process. We also show that the mTOR regulatory pathway is present in human oocytes and is likely to function in a similar way as in mouse oocytes.
- MeSH
- Spindle Apparatus genetics MeSH
- Cell Cycle genetics MeSH
- Phosphoproteins genetics metabolism MeSH
- Phosphorylation MeSH
- Humans MeSH
- Mice MeSH
- Oocytes growth & development metabolism MeSH
- CDC2 Protein Kinase genetics MeSH
- Protein Biosynthesis MeSH
- TOR Serine-Threonine Kinases genetics MeSH
- Carrier Proteins genetics metabolism MeSH
- Gene Expression Regulation, Developmental MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Polo-like kinase 1 (PLK1) is involved in essential events of cell cycle including mitosis in which it participates in centrosomal microtubule nucleation, spindle bipolarity establishment and cytokinesis. Although PLK1 function has been studied in cycling cancer cells, only limited data are known about its role in the first mitosis of mammalian zygotes. During the 1-cell stage of mouse embryo development, the acentriolar spindle is formed and the shift from acentriolar to centrosomal spindle formation progresses gradually throughout the preimplantation stage, thus providing a unique possibility to study acentriolar spindle formation. We have shown previously that PLK1 activity is not essential for entry into first mitosis, but is required for correct spindle formation and anaphase onset in 1-cell mouse embryos. In the present study, we extend this knowledge by employing quantitative confocal live cell imaging to determine spindle formation kinetics in the absence of PLK1 activity and answer the question whether metaphase arrest at PLK1-inhibited embryos is associated with low anaphase-promoting complex/cyclosome (APC/C) activity and consequently high securin level. We have shown that inhibition of PLK1 activity induces a delay in onset of acentriolar spindle formation during first mitosis. Although these PLK1-inhibited 1-cell embryos were finally able to form a bipolar spindle, not all chromosomes were aligned at the metaphase equator. PLK1-inhibited embryos were arrested in metaphase without any sign of APC/C activation with high securin levels. Our results document that PLK1 controls the onset of spindle assembly and spindle formation, and is essential for APC/C activation before anaphase onset in mouse zygotes.
- MeSH
- Anaphase MeSH
- Anaphase-Promoting Complex-Cyclosome metabolism MeSH
- Spindle Apparatus metabolism MeSH
- Blastocyst MeSH
- Time-Lapse Imaging MeSH
- Centrosome metabolism MeSH
- Kinetics MeSH
- Kinetochores metabolism MeSH
- Microscopy, Confocal MeSH
- Mitosis MeSH
- Mice MeSH
- Protein Serine-Threonine Kinases antagonists & inhibitors metabolism MeSH
- Cell Cycle Proteins antagonists & inhibitors metabolism MeSH
- Proto-Oncogene Proteins antagonists & inhibitors metabolism MeSH
- Pteridines pharmacology MeSH
- Animals MeSH
- Zygote drug effects metabolism MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH