Spectral classification
Dotaz
Zobrazit nápovědu
Electroretinograms (ERGs) show differences between typically developing populations and those with a diagnosis of autism spectrum disorder (ASD) or attention deficit/hyperactivity disorder (ADHD). In a series of ERGs collected in ASD (n = 77), ADHD (n = 43), ASD + ADHD (n = 21), and control (n = 137) groups, this analysis explores the use of machine learning and feature selection techniques to improve the classification between these clinically defined groups. Standard time domain and signal analysis features were evaluated in different machine learning models. For ASD classification, a balanced accuracy (BA) of 0.87 was achieved for male participants. For ADHD, a BA of 0.84 was achieved for female participants. When a three-group model (ASD, ADHD, and control) the BA was lower, at 0.70, and fell further to 0.53 when all groups were included (ASD, ADHD, ASD + ADHD, and control). The findings support a role for the ERG in establishing a broad two-group classification of ASD or ADHD, but the model's performance depends upon sex and is limited when multiple classes are included in machine learning modeling.
- Publikační typ
- časopisecké články MeSH
Spinal cord injury (SCI) often leads to central neuropathic pain, a condition associated with significant morbidity and is challenging in terms of the clinical management. Despite extensive efforts, identifying effective biomarkers for neuropathic pain remains elusive. Here we propose a novel approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with artificial neural networks (ANNs) to discriminate between mass spectral profiles associated with chronic neuropathic pain induced by SCI in female mice. Functional evaluations revealed persistent chronic neuropathic pain following mild SCI as well as minor locomotor disruptions, confirming the value of collecting serum samples. Mass spectra analysis revealed distinct profiles between chronic SCI and sham controls. On applying ANNs, 100% success was achieved in distinguishing between the two groups through the intensities of m/z peaks. Additionally, the ANNs also successfully discriminated between chronic and acute SCI phases. When reflexive pain response data was integrated with mass spectra, there was no improvement in the classification. These findings offer insights into neuropathic pain pathophysiology and underscore the potential of MALDI-TOF MS coupled with ANNs as a diagnostic tool for chronic neuropathic pain, potentially guiding attempts to discover biomarkers and develop treatments.
- MeSH
- biologické markery krev MeSH
- chronická bolest krev diagnóza etiologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neuralgie * krev diagnóza etiologie MeSH
- neuronové sítě * MeSH
- poranění míchy * komplikace krev MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice * metody MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
This study reports on the successful use of a machine learning approach using attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy for the classification and prediction of a donor's sex from the fingernails of 63 individuals. A significant advantage of ATR FT-IR is its ability to provide a specific spectral signature for different samples based on their biochemical composition. The infrared spectrum reveals unique vibrational features of a sample based on the different absorption frequencies of the individual functional groups. This technique is fast, simple, non-destructive, and requires only small quantities of measured material with minimal-to-no sample preparation. However, advanced multivariate techniques are needed to elucidate multiplex spectral information and the small differences caused by donor characteristics. We developed an analytical method using ATR FT-IR spectroscopy advanced with machine learning (ML) based on 63 donors' fingernails (37 males, 26 females). The PLS-DA and ANN models were established, and their generalization abilities were compared. Here, the PLS scores from the PLS-DA model were used for an artificial neural network (ANN) to create a classification model. The proposed ANN model showed a greater potential for predictions, and it was validated against an independent dataset, which resulted in 92% correctly classified spectra. The results of the study are quite impressive, with 100% accuracy achieved in correctly classifying donors as either male or female at the donor level. Here, we underscore the potential of ML algorithms to leverage the selectivity of ATR FT-IR spectroscopy and produce predictions along with information about the level of certainty in a scientifically defensible manner. This proof-of-concept study demonstrates the value of ATR FT-IR spectroscopy as a forensic tool to discriminate between male and female donors, which is significant for forensic applications.
CT s photon-counting detektory je nová technologie, která umožňuje překonat některé nevýhody spojené s konvenčně využívanými energy-integrating detektory. Photon-counting detektory umožnují odlišit jednotlivé rtg fotony, proto je možné minimalizovat elektronický šum. Mimo to umožňují získat ultra vysoké rozlišení bez nutnosti vyšší dávky. A v neposlední řadě tyto detektory poskytují spektrální data, proto je možné odlišit různé materiály v CT obrazech, a rekonstruovat tak virtuální obrazy různých energií a také nativní obrazy.
CT with photon-counting detectors is an emerging technology that overcomes some drawbacks of the conventional CT with energyintegrating detectors. It can differentiate individual X-ray photons, so acquired data does not suffer from electronic noise. Moreover, photon-counting detectors provide ultra high resolution without increased dose. And finally, detectors provide spectral data which enables differentiation of different materials in CT data, therefore virtual monoenergetic and non-contrast images can be reconstructed.
- MeSH
- fotony * MeSH
- lidé MeSH
- počítačová rentgenová tomografie * metody MeSH
- počítačové zpracování obrazu MeSH
- scintilace - počítání MeSH
- spektrální analýza MeSH
- statistika jako téma MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
BACKGROUND: Machine learning (ML) approaches can significantly improve the classical Rout-based evaluation of the lumbar infusion test (LIT) and the clinical management of the normal pressure hydrocephalus. OBJECTIVE: To develop a ML model that accurately identifies patients as candidates for permanent cerebral spinal fluid shunt implantation using only intracranial pressure and electrocardiogram signals recorded throughout LIT. METHODS: This was a single-center cohort study of prospectively collected data of 96 patients who underwent LIT and 5-day external lumbar cerebral spinal fluid drainage (external lumbar drainage) as a reference diagnostic method. A set of selected 48 intracranial pressure/electrocardiogram complex signal waveform features describing nonlinear behavior, wavelet transform spectral signatures, or recurrent map patterns were calculated for each patient. After applying a leave-one-out cross-validation training-testing split of the data set, we trained and evaluated the performance of various state-of-the-art ML algorithms. RESULTS: The highest performing ML algorithm was the eXtreme Gradient Boosting. This model showed a good calibration and discrimination on the testing data, with an area under the receiver operating characteristic curve of 0.891 (accuracy: 82.3%, sensitivity: 86.1%, and specificity: 73.9%) obtained for 8 selected features. Our ML model clearly outperforms the classical Rout-based manual classification commonly used in clinical practice with an accuracy of 62.5%. CONCLUSION: This study successfully used the ML approach to predict the outcome of a 5-day external lumbar drainage and hence which patients are likely to benefit from permanent shunt implantation. Our automated ML model thus enhances the diagnostic utility of LIT in management.
BACKGROUND AND OBJECTIVES: The lack of medical facilities in isolated areas makes many patients remain aloof from quick and timely diagnosis of cardiovascular diseases, leading to high mortality rates. A deep learning based method for automatic diagnosis of multiple cardiac diseases from Phonocardiogram (PCG) signals is proposed in this paper. METHODS: The proposed system is a combination of deep learning based convolutional neural network (CNN) and power spectrogram Cardi-Net, which can extract deep discriminating features of PCG signals from the power spectrogram to identify the diseases. The choice of Power Spectral Density (PSD) makes the model extract highly discriminatory features significant for the multi-classification of four common cardiac disorders. RESULTS: Data augmentation techniques are applied to make the model robust, and the model undergoes 10-fold cross-validation to yield an overall accuracy of 98.879% on the test dataset to diagnose multi heart diseases from PCG signals. CONCLUSION: The proposed model is completely automatic, where signal pre-processing and feature engineering are not required. The conversion time of power spectrogram from PCG signals is very low range from 0.10 s to 0.11 s. This reduces the complexity of the model, making it highly reliable and robust for real-time applications. The proposed architecture can be deployed on cloud and a low cost processor, desktop, android app leading to proper access to the dispensaries in remote areas.
- MeSH
- kardiovaskulární nemoci * MeSH
- lidé MeSH
- nemoci srdce * diagnostické zobrazování MeSH
- neuronové sítě MeSH
- počítačové zpracování signálu MeSH
- rostlinné extrakty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: Verbal memory dysfunction is common in focal, drug-resistant epilepsy (DRE). Unfortunately, surgical removal of seizure-generating brain tissue can be associated with further memory decline. Therefore, localization of both the circuits generating seizures and those underlying cognitive functions is critical in presurgical evaluations for patients who may be candidates for resective surgery. We used intracranial electroencephalographic (iEEG) recordings during a verbal memory task to investigate word encoding in focal epilepsy. We hypothesized that engagement in a memory task would exaggerate local iEEG feature differences between the seizure onset zone (SOZ) and neighboring tissue as compared to wakeful rest ("nontask"). METHODS: Ten participants undergoing presurgical iEEG evaluation for DRE performed a free recall verbal memory task. We evaluated three iEEG features in SOZ and non-SOZ electrodes during successful word encoding and compared them with nontask recordings: interictal epileptiform spike (IES) rates, power in band (PIB), and relative entropy (REN; a functional connectivity measure). RESULTS: We found a complex pattern of PIB and REN changes in SOZ and non-SOZ electrodes during successful word encoding compared to nontask. Successful word encoding was associated with a reduction in local electrographic functional connectivity (increased REN), which was most exaggerated in temporal lobe SOZ. The IES rates were reduced during task, but only in the non-SOZ electrodes. Compared with nontask, REN features during task yielded marginal improvements in SOZ classification. SIGNIFICANCE: Previous studies have supported REN as a biomarker for epileptic brain. We show that REN differences between SOZ and non-SOZ are enhanced during a verbal memory task. We also show that IESs are reduced during task in non-SOZ, but not in SOZ. These findings support the hypothesis that SOZ and non-SOZ respond differently to task and warrant further exploration into the use of cognitive tasks to identify functioning memory circuits and localize SOZ.
- MeSH
- elektroencefalografie MeSH
- elektrokortikografie MeSH
- epilepsie parciální * chirurgie MeSH
- lidé MeSH
- mozek MeSH
- refrakterní epilepsie * chirurgie MeSH
- záchvaty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Speech is controlled by axial neuromotor systems, therefore, it is highly sensitive to the effects of neurodegenerative illnesses such as Parkinson's Disease (PD). Patients suffering from PD present important alterations in speech, which are manifested in phonation, articulation, prosody, and fluency. These alterations may be evaluated using statistical methods on features obtained from glottal, spectral, cepstral, or fractal descriptions of speech. This work introduces an evaluation paradigm based on Information Theory (IT) to differentiate the effects of PD and aging on glottal amplitude distributions. The study is conducted on a database including 48 PD patients (24 males, 24 females), 48 age-matched healthy controls (HC, 24 males, 24 females), and 48 mid-age normative subjects (NS, 24 males, 24 females). It may be concluded from the study that Hierarchical Clustering (HiCl) methods produce a clear separation between the phonation of PD patients from NS subjects (accuracy of 89.6% for both male and female subsets), but the separation between PD patients and HC subjects is less efficient (accuracy of 75.0% for the male subset and 70.8% for the female subset). Conversely, using feature selection and Support Vector Machine (SVM) classification, the differentiation between PD and HC is substantially improved (accuracy of 94.8% for the male subset and 92.8% for the female subset). This improvement was mainly boosted by feature selection, at a cost of information and generalization losses. The results point to the possibility that speech deterioration may affect HC phonation with aging, reducing its difference to PD phonation.
- MeSH
- akustika řeči MeSH
- diferenciální diagnóza MeSH
- fonace fyziologie MeSH
- lidé MeSH
- Parkinsonova nemoc komplikace patofyziologie MeSH
- poruchy řeči etiologie patofyziologie MeSH
- senioři MeSH
- stárnutí fyziologie MeSH
- support vector machine * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
This paper is devoted to proving two goals, to show that various depth sensors can be used to record breathing rate with the same accuracy as contact sensors used in polysomnography (PSG), in addition to proving that breathing signals from depth sensors have the same sensitivity to breathing changes as in PSG records. The breathing signal from depth sensors can be used for classification of sleep [d=R2]apneaapnoa events with the same success rate as with PSG data. The recent development of computational technologies has led to a big leap in the usability of range imaging sensors. New depth sensors are smaller, have a higher sampling rate, with better resolution, and have bigger precision. They are widely used for computer vision in robotics, but they can be used as non-contact and non-invasive systems for monitoring breathing and its features. The breathing rate can be easily represented as the frequency of a recorded signal. All tested depth sensors (MS Kinect v2, RealSense SR300, R200, D415 and D435) are capable of recording depth data with enough precision in depth sensing and sampling frequency in time (20-35 frames per second (FPS)) to capture breathing rate. The spectral analysis shows a breathing rate between 0.2 Hz and 0.33 Hz, which corresponds to the breathing rate of an adult person during sleep. To test the quality of breathing signal processed by the proposed workflow, a neural network classifier (simple competitive NN) was trained on a set of 57 whole night polysomnographic records with a classification of sleep [d=R2]apneaapnoas by a sleep specialist. The resulting classifier can mark all [d=R2]apneaapnoa events with 100% accuracy when compared to the classification of a sleep specialist, which is useful to estimate the number of events per hour. [d=R2]When compared to the classification of polysomnographic breathing signal segments by a sleep specialistand, which is used for calculating length of the event, the classifier has an [d=R1] F 1 score of 92.2%Accuracy of 96.8% (sensitivity 89.1% and specificity 98.8%). The classifier also proves successful when tested on breathing signals from MS Kinect v2 and RealSense R200 with simulated sleep [d=R2]apneaapnoa events. The whole process can be fully automatic after implementation of automatic chest area segmentation of depth data.
- MeSH
- dechová frekvence fyziologie MeSH
- dospělí MeSH
- dýchání MeSH
- lidé středního věku MeSH
- lidé MeSH
- počítačové zpracování signálu MeSH
- polysomnografie metody MeSH
- senzitivita a specificita MeSH
- spánek fyziologie MeSH
- syndromy spánkové apnoe patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Objective: Classification of voices into types depends on several factors: physiological - the size of the laryngeal and vocal tracts; acoustic-musically acceptable vocal range; position of formants; and properties of timbre. The aim of the study is to verify whether a group of experienced voice pedagogues and singers can determine the vocal type of the artist based on listening to a part of the aria better than a group of musicians can, and to determine what acoustic properties of the recordings are linked with the perceptual results of their evaluation.Methods: Freely available recordings of 11 females of different vocal categories of Rossini's aria "Una voce poco fa" from the opera Il Barbiere di Seviglia were selected for listening tests performed on examples of recitatives and coloraturas. Seven voice teachers (experienced group) and seven musicians non-teachers (laypeople group) evaluated the properties of the vocal category, timbre (dark-bright), resonance, vowel placement, suitability of vibrato, aesthetic impression, and voice flexibility.Results: The results showed a significantly higher inter-judge reliability in the experienced group. The highest reliability was achieved in timbre and vocal category evaluation, the least consistent was the evaluation of resonance. Factor analysis of the assessment variability showed dependent ratings of the vocal category, brightness and vowel placement for both groups in recitative. The experienced group similarly evaluated the brightness and the vocal category in coloratura. Assessment of the vocal category correlated with the reported categories of singers only in the experienced group. The categories mezzo-soprano and soprano were differentiated by spectral levels (based on FFT analysis of whole stimuli) in the 3.5-4.1 kHz spectral band in the recitative and in the 1.3-2.1 kHz and around 2.5 kHz bands in coloratura, and by the position of the local minimum after the fifth maximum for both kinds of stimuli.Conclusions: By means of correlation with ratings by experienced listeners, it is demonstrated that the voice category is mainly connected with the levels of specific spectral peaks, while brightness is correlated with the frequency positions of spectral maxima.