miR-1
Dotaz
Zobrazit nápovědu
INTRODUCTION: MicroRNAs (miRNAs) are small non-coding single-stranded RNA molecules that regulate gene expression at the post-transcriptional level. In the pathogenesis of chronic lymphocytic leukemia (CLL), miR-15a and miR-16-1 play an important role. These miRNAs are located on chromosome 13 in the 13q14.3 region, which is deleted in more than 55% of CLL patients. This aberration affects expression of miRNAs. OBJECTIVES: The study aimed at performing a molecular genetic analysis of miR-15a and miR-16-1 expression in a group of 39 patients diagnosed with CLL and determining the association between the expression of the two miRNAs and types of deletions in the 13q14 region. METHODS: We used fluorescence in situ hybridiziation (FISH) for determination of mono- or biallelic deletion 13q and quantitative polymerase chain reaction (Q-RT-PCR) to revealed expression miR-15a and miR-16-1 in 39 patients suffering from CLL. RESULTS: The analysis comprised 19 patients with monoallelic 13q14 deletion, 3 patients with biallelic deletion, 9 patients with both monoallelic and biallelic deletions, and 8 patients without 13q14 deletion serving as controls. The results showed different levels of miRNA expression in individual patients. Significantly higher normalized levels of miR-15a expression were found in the control group and patients with monoallelic 13q14 expression compared with patients with biallelic deletion. There was a significantly decreased expression of both miRNAs in patients with biallelic deletion of the 13q14 region but only when deletions were present in 77% or more of cells, as detected by fluorescent in situ hybridization (FISH).
- MeSH
- chronická lymfatická leukemie genetika metabolismus MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA biosyntéza MeSH
- regulace genové exprese u nádorů MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Psoriatic lesions are characterized by hyperproliferation, aberrant differentiation of keratinocytes resistant to apoptosis and inflammation. miR-31 plays pro-proliferative, pro-differentiative and pro-inflammatory roles and modulates apoptosis in psoriatic keratinocytes. Endothelin-1 (ET-1) is produced by psoriatic keratinocytes and suppresses apoptosis. Inflammation increases the production of ET-1, which in turn leads to the chronic stimulation of keratinocyte proliferation. The aim of this study was to identify the putative link between two potential biomarkers (miR-31 and ET-1) in patients with psoriasis. The study design included experimental group (29 patients with psoriasis), and the control group (22 blood donors). The PASI score evaluated the state of the disease (median: 18.6; interquartile range 14.5-20.9). Both, the serum level of ET-1 and the whole blood level of miR-31 were significantly increased (p<0.001 and p<0.05, respectively) in patients compared to the controls. However, a significant negative relationship between ET-1 and miR-31 was observed (Spearman's rho=-037, p=0.05). It is possible that a negative feedback loop will be present between miR-31 and ET-1. Our results indicate that miR-31 and ET-1, potential biomarkers of the disease, play significant roles in the pathophysiology of psoriasis.
- MeSH
- biologické markery krev MeSH
- cirkulující mikroRNA krev genetika MeSH
- dospělí MeSH
- endotelin-1 krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA krev genetika MeSH
- mladiství MeSH
- mladý dospělý MeSH
- psoriáza krev diagnóza genetika patofyziologie MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- stupeň závažnosti nemoci MeSH
- upregulace MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Etoposide is commonly used as a monotherapy or in combination with other drugs for cancer treatments. In order to increase the drug efficacy, ceaseless search for novel combinations of drugs and supporting molecules is under way. MiRNAs are natural candidates for facilitating drug effect in various cell types. We used several systems to evaluate the effect of miR-29 family on etoposide toxicity in HeLa cells. We show that miR-29b significantly increases etoposide toxicity in HeLa cells. Because Mcl-1 protein has been recognized as a miR-29 family target, we evaluated downregulation of Mcl-1 protein splicing variant expression induced by miR-29 precursors and confirmed a key role of Mcl-1 protein in enhancing etoposide toxicity. Despite downregulation of Mcl-1 by all three miR-29 family members, only miR-29b significantly enhanced etoposide toxicity. We hypothesized that this difference may be linked to the change in Mcl-1L/Mcl-1S ratio induced by miR-29b. We hypothesized that the change could be due to miR-29b nuclear shuttling. Using specifically modified miR-29b sequences with enhanced cytosolic and nuclear localization we show that there is a difference, albeit statistically non-significant. In conclusion, we show that miR-29b has the synergistic effect with etoposide treatment in the HeLa cells and that this effect is linked to Mcl-1 protein expression and nuclear shuttling of miR-29b.
- MeSH
- buněčný cyklus účinky léků MeSH
- down regulace MeSH
- etoposid toxicita MeSH
- fytogenní protinádorové látky toxicita MeSH
- HeLa buňky MeSH
- lidé MeSH
- mikro RNA metabolismus MeSH
- protein MCL-1 genetika metabolismus MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Gluteal muscle contracture (GMC) is a chronic fibrotic disease of gluteal muscles due to multiple etiologies. Emilin 1 plays a determinant role in fibers formation, but its role in the progression of GMC remains unclear. The present study was aimed to search for the predictive role and regulatory mechanism of Emilin 1 on GMC. Here, Protein and mRNA expression of Emilin 1 were decreased in GMC tissues compared to normal muscle tissues. Using the anslysis of target prediction, Emilin 1 was observed to be a potential downstream sponge of miR-491-5p. In comparison to Emilin 1, miR-491-5p showed a aberrant elevation in GMC tissues, which was further proven to have a negative correlation with Emilin 1. The direct binding of miR-491-5p to Emilin 1 mRNA was confirmed by luciferase reporter gene assay, and miR-491-5p mimics inhibited, while miR-491-5p inhibitor promoted the protein expression and secretion of Emilin 1 in contraction bands (CB) fibroblasts. Additionally, miR-491-5p mimics promoted the expression of cyclin-dependent kinase 2 and cyclin D1 and the proliferation of CB fibroblasts, which could be reversed by Emilin 1 overexpression. Mechanistically, miR-491-5p mimics possibly activated transforming growth factor beta1 (TGF-beta1)/Smad3 signal cascade via binding to 3'-untranslated region of Emilin 1 mRNA, thereby promoting the progression of fibrosis of CB fibroblasts. Collectively, miR-491-5p inhibited Emilin 1 expression, and subsequently promoted CB fibroblasts proliferation and fibrosis via activating TGF-beta1/Smad3 signal axis. MiR-491-5p might be a potentially effective biomarker for predicting GMC, providing a novel therapeutic strategy for GMC.
- MeSH
- fibroblasty metabolismus MeSH
- fibróza MeSH
- kontraktura * patologie MeSH
- kosterní svaly metabolismus MeSH
- lidé MeSH
- membránové glykoproteiny MeSH
- messenger RNA metabolismus MeSH
- mikro RNA * genetika metabolismus MeSH
- proliferace buněk MeSH
- protein Smad2 metabolismus MeSH
- transformující růstový faktor beta1 genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
DNA ligase 1 (LIG1) plays a key role in DNA synthesis and DNA damage repair pathways. LIG1 has been shown to be up-regulated in human non-small cell lung cancer (NSCLC); however, its role and molecular regulatory mechanism in NSCLC cell proliferation are still not fully understand. In this study, we aimed to explore the role of LIG1 and post-transcripional regulators in NSCLC. Utilizing bioinformatic tools and qRT-PCR, our investigation substantiated the up-regulation of LIG1 within NSCLC cell lines and tumour tissues. Remarkably, individuals exhibiting elevated levels of LIG1 had diminished survival rates. Functionally, the depletion of LIG1 inhibited cell proliferation and migration, contrasting with the increased proliferation and migration upon LIG1 over-expression. Prediction from the TargetScanHuman database and results of dual luciferase reporter assays indicated that miR-325 could directly bind to and negatively regulate LIG1. Moreover, our findings demonstrated that the mimicry of miR-325 decreased cell viability, whereas its inhibition correspondingly increased viability, indicative of the tumour-suppressive role of miR-325 through the down-regulation of LIG1. Collectively, our findings show that LIG1 could promote tumour progression and knockdown of LIG1 could exert suppressive effects on NSCLC. As the post-transcriptional factor of LIG1, miR-325 could negatively regulate the expression of LIG1 to inhibit tumour progression in vitro. These findings suggest that LIG1 and miR-325 might be potential therapeutic targets for NSCLC treatment.
- MeSH
- DNA-ligasa ATP * metabolismus genetika MeSH
- lidé MeSH
- mikro RNA * genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory plic * patologie genetika metabolismus MeSH
- nemalobuněčný karcinom plic * genetika patologie metabolismus MeSH
- pohyb buněk * MeSH
- proliferace buněk * MeSH
- regulace genové exprese u nádorů MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The aberrantly expressed microRNAs (miRNAs) including miR-29c-3p have been reported in the brains of Alzheimer's disease (AD) patients in recent researches. Nevertheless, the functional role and underlying molecular mechanism of miR-29c-3p in AD pathogenesis are still not well elucidated. The purpose of this study was to examine whether miR-29c-3p regulated beta-Ameyloid (Abeta)-induced neurotoxicity by targeting beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1). The expressions of miR 29c 3p and BACE1 mRNA and protein levels in Abeta-treated PC12 cellular AD model were examined by qRT-PCR and western blot analyses. Luciferase reporter assay verified the potential target of miR 29c 3p. Cell viability, apoptosis, and caspase-3 activity in PC12 cells were detected by the MTT assay, flow cytometry, and caspase-3 activity assay, respectively. Our results indicated that miR-29c-3p downregulation and BACE1 upregulation existed in the cellular AD model of PC12 cells. Moreover, miR-29c-3p directly inhibited BACE1 expression. miR-29c-3p overexpression and BACE1 knockdown strengthened Abeta-induced cell apoptosis, and caspase-3 activity in PC12 cells, which was partially eliminated by over-expression of BACE1. Conversely, BACE1 knockdown reversed the miR-29c-3p inhibition- mediated inhibitory effect on Abeta-induced cell toxicity, apoptosis, and caspase-3 activity in PC12 cells. Considering, miR-29c-3p attenuated Abeta-induced neurotoxicity through targeting BACE1 in an cellular AD model of PC12, providing a potential therapeutic target for AD treatment.
- MeSH
- Alzheimerova nemoc * metabolismus MeSH
- amyloidní beta-protein toxicita genetika metabolismus MeSH
- amyloidový prekurzorový protein beta genetika metabolismus MeSH
- aspartátové endopeptidasy genetika metabolismus MeSH
- kaspasa 3 metabolismus MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- mikro RNA * genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- sekretasy genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
319 s. : il.