phase-change materials
Dotaz
Zobrazit nápovědu
Practical applications of Phase Change Materials (PCMs) often require their encapsulation in other materials, such as metals or plastics. This raises the issue of compatibility between PCMs and encapsulating materials, which has still not been sufficiently addressed. The study presented here follows existing research and provides experimental evaluation of the suitability of selected PCMs for proposed integration in building structures. Two organic PCMs, two inorganic PCMs and three representative plastics (polypropylene (PP-H), high density polyethylene (PE-HD) and polyvinylchloride (PVC-U)) were selected for compatibility tests. Evaluation of the results is based on the mass variations of the plastic samples during the test period. Plastic samples were immersed in PCMs and subjected to periodic heating and cooling (for 16 weeks) in a small environmental chamber simulating real operational conditions. The results show that the organic PCMs have a greater ability to penetrate the PE-HD and PP-H compared with the inorganic PCMs. The penetration of all PCMs was most notable during the first four weeks of the experiment. Later it slowed down significantly. Overall, the mass changes in PE-HD and PP-H samples did not exceed 6.9% when immersed in organic PCMs and 1.8% in inorganic PCMs. PVC-U samples exhibited almost negligible (less than 0.1%) mass variation in all cases.
- MeSH
- polyethylen chemie MeSH
- polypropyleny chemie MeSH
- polyvinylchlorid chemie MeSH
- Publikační typ
- časopisecké články MeSH
RATIONALE: Although the structure of atomic switch Ge2Sb2Te5 (GST) thin films is well established, the composition of the clusters formed in the plasma plume during pulsed-laser deposition (PLD) is not known. Laser Desorption Ionization Time-of-Flight Mass Spectrometry (LDI-TOF MS) is an effective method for the generation and study of clusters formed by laser ablation of various solids and thus for determining their structural fragments. METHODS: LDI of bulk or PLD-deposited GST thin layers and of various precursors (Ge, Sb, Te, and Ge-Te or Sb-Te mixtures) using a nitrogen laser (337 nm) was applied while the mass spectra were recorded in positive and negative ion modes using a TOF mass spectrometer equipped with a reflectron while the stoichiometry of the clusters formed was determined via isotopic envelope analysis. RESULTS: The singly negatively or positively charged clusters identified from the LDI of GST were Ge, Ge2, GeTe, Ge2Te, Ten (n = 1-3), GeTe2, Ge2Te2, GeTe3, SbTe2, Sb2Te, GeSbTe2, Sb3Te and the low abundance ternary GeSbTe3, while the LDI of germanium telluride yielded Gem Ten (+) clusters (m = 1-3, n = 1-3). Several minor Ge-H clusters were also observed for pure germanium and for germanium telluride. Sbn clusters (n = 1-3) and the formation of binary TeSb, TeSb2 and TeSb3 clusters were detected when Sb2Te3 was examined. CONCLUSIONS: This is the first report that elucidates the stoichiometry of Gem Sbn Tep clusters formed in plasma when bulk or nano-layers of GST material are ablated. The clusters were found to be fragments of the original structure. The results might facilitate the development of PLD technology for this memory phase-change material.
Structure and properties of poly(lactic acid) (PLA)/poly (ɛ-caprolactone) (PCL) influenced by graphite nanoplatelets (GNP) were studied in dependence on blend composition. Electron microscopy indicates predominant localization of GNP in PCL. GNP-induced changes in viscosity hinder refinement of PCL inclusions, support PCL continuity in the co-continuous system, and lead to reduction of PLA inclusions size without GNP being present at the interface in the PCL-matrix blend. Negligible differences in crystallinity of both phases indicate that mechanical behaviour is mainly influenced by reinforcement and GNP-induced changes in morphology. Addition of 5 parts of GNP leads to ~40% and ~25% increase of stiffness in the PCL- and PLA-matrix systems, respectively, whereas the reinforcing effect is practically eliminated in the co-continuous systems due to GNP-induced lower continuity of PLA which enhances toughness. Impact resistance of the 80/20 blend shows increase with 5 parts content due to synergistic effect of PCL/GNP stacks, whereas minor increase in the blend of the ductile PCL matrix with brittle PLA inclusions is caused by GNP-modification of the component parameters. Results indicate high potential of GNP in preparing biocompatible systems with wide range of structure and properties.
During the curing process of light curing dental composites the mobility of molecules and molecule segments is reduced leading to a significant increase of the viscosity as well as the ion viscosity. Thus, the kinetics of the curing behavior of 6 different composites was derived from dielectric analysis (DEA) using especially redesigned flat sensors with interdigit comb electrodes allowing for irradiation at the top side and measuring the ion viscosity at the bottom side. As the ion viscosities of dental composites change 1-3 orders of magnitude during the curing process, DEA provides a sensitive approach to evaluate their curing behavior, especially in the phase of undisturbed chain growth. In order to determine quantitative kinetic parameters a kinetic model is presented and examined for the evaluation of the ion viscosity curves. From the obtained results it is seen that DEA might be employed in the investigation of the primary curing process, the quality assurance of ingredients as well as the control of processing stability of the light curing dental composites.
OBJECTIVES: Palladium-silver system alloyed with other metals represents one of possible material choices in prosthetics. Its corrosion properties are influenced by minority components added in order to obtain the properties required for stomatological purposes. The objective of this work was to ascertain the influence of copper on the corrosion mechanism of palladium-silver alloys. METHODS: Corrosion properties of four palladium-silver-copper alloys were compared with the behavior of the palladium-silver binary system. Standard electrochemical measurements in a model saliva solution were complemented with an XPS analysis of the specimens surface. Experimental data were compared with the results of thermodynamic analysis. RESULTS: The foregoing study revealed formation of a saline layer of insoluble silver compounds as the dominant feature of the corrosion mechanism in a binary system. This process is suppressed in ternary alloys where electrochemical reactions of copper take place on the alloy-electrolyte phase boundary leading to the formation of a layer based on copper oxides. SIGNIFICANCE: The alloying of the palladium-silver binary system with copper results in an important change in the corrosion behavior of ternary alloys. A change in the mechanism of interaction with the environment leads to susceptibility to non-uniform corrosion.
- MeSH
- časové faktory MeSH
- elektrochemie MeSH
- koroze MeSH
- lidé MeSH
- měď * chemie MeSH
- mikroanalýza elektronovou sondou MeSH
- náhrada slin * chemie MeSH
- palladium * chemie MeSH
- potenciometrie MeSH
- povrchové vlastnosti MeSH
- stříbro * chemie MeSH
- termodynamika MeSH
- testování materiálů MeSH
- zubní slitiny * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- srovnávací studie MeSH
BACKGROUND: Nanofiber wound dressings remain the domain of in vitro studies. The purpose of our study was to verify the benefits of chitosan (CTS) and polylactide (PLA)-based nanofiber wound dressings on a porcine model of a naturally contaminated standardized wound and compare them with the conventional dressings, i.e., gauze and Inadine. MATERIAL AND METHODS: The study group included 32 pigs randomized into four homogeneous groups according to the wound dressing type. Standardized wounds were created on their backs, and wound dressings were regularly changed. We evaluated difficulty of handling individual dressing materials and macroscopic appearance of the wounds. Wound swabs were taken for bacteriological examination. Blood samples were obtained to determine blood count values and serum levels of acute phase proteins (serum amyloid A, C-reactive protein, and haptoglobin). The crucial point of the study was histological analysis. Microscopic evaluation was focused on the defect depth and tissue reactions, including formation of the fibrin exudate with neutrophil granulocytes, the layer of granulation and cellular connective tissue, and the reepithelialization. Statistical analysis was performed by using SPSS software. The analysis was based on the Kruskal-Wallis H test and Mann-Whitney U test followed by Bonferroni correction. Significance was set at P < .05. RESULTS: Macroscopic examination did not show any difference in wound healing among the groups. However, evaluation of histological findings demonstrated that PLA-based nanofiber dressing accelerated the proliferative (P = .025) and reepithelialization (P < .001) healing phases, while chitosan-based nanofiber dressing potentiated and accelerated the inflammatory phase (P = .006). No statistically significant changes were observed in the blood count or acute inflammatory phase proteins during the trial. Different dynamics were noted in serum amyloid A values in the group treated with PLA-based nanofiber dressing (P = .006). CONCLUSION: Based on the microscopic examination, we have documented a positive effect of nanofiber wound dressings on acceleration of individual phases of the healing process. Nanofiber wound dressings have a potential to become in future part of the common wound care practice.
Self-organization in a polymer system appears when a balance is achieved between long-range repulsive and short-range attractive forces between the chemically different building blocks. Block copolymers forming supramolecular assemblies in aqueous media represent materials which are extremely useful for the construction of drug delivery systems especially for cancer applications. Such formulations suppress unwanted physicochemical properties of the encapsulated drugs, modify biodistribution of the drugs towards targeted delivery into tissue of interest and allow triggered release of the active cargo. In this review, we focus on general principles of polymer selforganization in solution, phase separation in polymer systems (driven by external stimuli, especially by changes in temperature, pH, solvent change and light) and on effects of copolymer architecture on the self-assembly process.
Tissue engineering benefits from novel materials with precisely tunable physical, chemical and mechanical properties over a broad range. Here we report a practical approach to prepare Bombyx mori silk fibroin hydrogels using the principle of non-solvent induced phase separation (NIPS). A combination of reconstituted silk fibroin (RSF) and methanol (non-solvent), with a final concentration of 2.5% w/v and 12.5% v/v respectively, maintained at 22 °C temperature turned into a hydrogel within 10 hours. Freeze-drying of this gel gave a foam with a porosity of 88%, a water uptake capacity of 89% and a swelling index of 8.6. The gelation kinetics and the loss tangent of the gels were investigated by rheometry. The changes in the morphology of the porous foams were visualized by SEM. The changes in RSF chemical composition and the relative fraction of its secondary structural elements were analyzed by ATR-FTIR along with Fourier self-deconvolution. And, the changes in the glass transition temperature, specific heat capacity and the relative fraction of crystallinity of RSF were determined by TM-DSC. Data suggested that RSF-water-methanol behaved as a polymer-solvent-non-solvent ternary phase system, wherein the demixing of the water-methanol phases altered the thermodynamic equilibrium of RSF-water phases and resulted in the desolvation and eventual separation of the RSF phase. Systematic analysis revealed that both gelation time and the properties of hydrogels and porous foams could be controlled by the ratios of RSF and non-solvent concentration as well as by the type of non-solvent and incubation temperature. Due to the unique properties we envisage that the herein prepared NIPS induced RSF hydrogels and porous foams can possibly be used for the encapsulation of cells and/or for the controlled release of both hydrophilic and hydrophobic drugs.
- MeSH
- biokompatibilní materiály chemie MeSH
- bourec chemie MeSH
- fibroiny chemie MeSH
- hydrofobní a hydrofilní interakce MeSH
- hydrogely chemie MeSH
- poréznost MeSH
- rozpouštědla chemie MeSH
- teplota MeSH
- tkáňové inženýrství MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
PURPOSE OF THE STUDY For an orthopedic surgeon it is difficult or even impossible to estimate the real quality of ultrahigh molecular weight polyethylene (UHMWPE) liners that are used in the total joint replacements (TJR) just on the basis of information given by the manufacturers. At the same time, the quality of the UHMWPE liner can impact strongly on the total lifespan of the implanted TJR. This work aims at independent, objective comparison of properties of the UHMWPE liners for total hip replacements (THR), which are most frequently used in the Czech Republic. MATERIAL AND METHODS We analyzed seventeen most frequently implanted UHMWPE cups of different manufacturers implanted in the Czech Republic between 2014 and 2015 and four control samples prepared by standard industrial-scale procedures according to our instructions, whose modification (crosslinking, thermal treatment, stabilization and sterilization) was known in detail. The UHMWPE polymer was characterized by four independent microscale methods, suitable for relatively small and irregular specimens such as THR cups: infrared microspectroscopy (IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). RESULTS The employed methods yielded quite complete information about the investigated UHMWPE materials. IR spectra enabled us to calculate oxidation indexes (OI, measure of oxidative damage), trans-vinylene indexes (VI, measure of absorbed radiation dose during crosslinking and/or sterilization) and crystallinity indexes (CI, amount of crystalline phase that strongly influences mechanical performance). DSC curves were employed in calculation of crystallinities (wc, proportional to CI) and melting points (Tm, proportional to the average thickness of crystalline lamellae). MH measurements confirmed that the observed structure changes showed a real impact on mechanical properties. TGA experiments gave rough estimate of stabilization and, consequently, possible long-term oxidation resistance. Significant correlations among oxidative damage (OI), crystallinity (CI, wc) and microhardness (Hv) were statistically proven. The highest oxidative degradation was usually observed in samples thermally treated by annealing and/or sterilized by gamma irradiation. DISCUSSION The results confirmed our expectations that the UHMWPE liners from various manufacturers can be significantly different as far as their molecular structure, supermolecular structure, and mechanical properties are concerned. The differences among the various UHMWPE can be expected to increase after the implantation during in vivo. CONCLUSIONS From the clinical practice point of view, the results showed the following facts: (i) In the field of THR, all manufactures prefer crosslinked types of UHMWPE due to their increased wear resistance; non-crosslinked UHMWPEs are regarded as obsolete. (ii) Most of the manufacturers prefer ethylene oxide or gas plasma sterilization to gamma sterilization because the gammasterilized UHMWPEs exhibit lower long-term oxidation resistance. (iii) Modern trend is the stabilization of UHMWPEs with vitamin E. Key words: UHMWPE, hip replacements, oxidative degradation, infrared spectroscopy, microhardness.
- MeSH
- lidé MeSH
- náhrada kyčelního kloubu * MeSH
- polyethyleny * MeSH
- testování materiálů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Raman spectroscopy is an important tool to understand the structural and molecular behaviour of the liquid crystals when they undergo through different temperatures. It also helps to understand the different phase changes of the liquid crystal material as temperature changes. In this work, the structural properties of two nematic liquid crystals having relatively high clearing temperature namely 4 butylcyclohexyl-3, 5-difluoro-4- isothiocyanato biphenyl and 4-pentylcyclohexyl-3, 5-difluoro-4-isothiocyanato biphenyl are studied. The study is done using temperature dependent Raman spectroscopy. From the studies of the two compounds it has been found that the experimental values are agree well with the various functional groups and different bond assignments recorded in literature. This agreement validates the presence of different functional groups and different stretching bonds in the two studied liquid crystal compounds. Deformations of some of the peak positions of the two liquid crystal compounds have been observed with the change in phase at different temperature. Also to understand the behaviour of the Raman peak near the clearing temperatures of the liquid crystal compounds the linewidth of the different peak values at different temperature have also been studied. From the line width study, the various phase transition temperatures of the two liquid crystalline compounds can be confirmed.
- MeSH
- bifenylové sloučeniny chemie MeSH
- kapalné krystaly * chemie MeSH
- Ramanova spektroskopie metody MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH