phylogenetic clustering
Dotaz
Zobrazit nápovědu
406 s.
The community composition of any group of organisms should theoretically be determined by a combination of assembly processes including resource partitioning, competition, environmental filtering, and phylogenetic legacy. Environmental DNA studies have revealed a huge diversity of protists in all environments, raising questions about the ecological significance of such diversity and the degree to which they obey to the same rules as macroscopic organisms. The fast-growing cultivable protist species on which hypotheses are usually experimentally tested represent only a minority of the protist diversity. Addressing these questions for the lesser known majority can only be inferred through observational studies. We conducted an environmental DNA survey of the genus Nebela, a group of closely related testate (shelled) amoeba species, in different habitats within Sphagnum-dominated peatlands. Identification based on the mitochondrial cytochrome c oxidase 1 gene, allowed species-level resolution as well as phylogenetic reconstruction. Community composition varied strongly across habitats and associated environmental gradients. Species showed little overlap in their realized niche, suggesting resource partitioning, and a strong influence of environmental filtering driving community composition. Furthermore, phylogenetic clustering was observed in the most nitrogen-poor samples, supporting phylogenetic inheritance of adaptations in the group of N. guttata. This study showed that the studied free-living unicellular eukaryotes follow to community assembly rules similar to those known to determine plant and animal communities; the same may be true for much of the huge functional and taxonomic diversity of protists.
- MeSH
- ekologie MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- rašeliníky * MeSH
- rostliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution.
- MeSH
- DNA rostlinná genetika MeSH
- Drosophila klasifikace genetika MeSH
- fylogeneze * MeSH
- genom genetika MeSH
- hmyzí geny genetika MeSH
- Magnoliopsida genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- shluková analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Phage WO is a bacteriophage found in Wolbachia. Herein, we represent the first phylogenetic study of WOs that infect spiders (Araneae). Seven species of spiders (Araneus alternidens, Nephila clavata, Hylyphantes graminicola, Prosoponoides sinensis, Pholcus crypticolens, Coleosoma octomaculatum, and Nurscia albofasciata) from six families were infected by Wolbachia and WO, followed by comprehensive sequence analysis. Interestingly, WO could be only detected Wolbachia-infected spiders. The relative infection rates of those seven species of spiders were 75, 100, 88.9, 100, 62.5, 72.7, and 100 %, respectively. Our results indicated that both Wolbachia and WO were found in three different body parts of N. clavata, and WO could be passed to the next generation of H. graminicola by vertical transmission. There were three different sequences for WO infected in A. alternidens and two different WO sequences from C. octomaculatum. Only one sequence of WO was found for the other five species of spiders. The discovered sequence of WO ranged from 239 to 311 bp. Phylogenetic tree was generated using maximum likelihood (ML) based on the orf7 gene sequences. According to the phylogenetic tree, WOs in N. clavata and H. graminicola were clustered in the same group. WOs from A. alternidens (WAlt1) and C. octomaculatum (WOct2) were closely related to another clade, whereas WO in P. sinensis was classified as a sole cluster.
Although many studies have shown that species richness decreases from low to high latitudes (the Latitudinal Diversity Gradient), little is known about the relationship between latitude and phylogenetic diversity. Here we examine global latitudinal patterns of phylogenetic diversity using a dataset of 459 woody and 589 herbaceous plant communities. We analysed the relationships between community phylogenetic diversity, latitude, biogeographic realm and vegetation type. Using the most recent global megaphylogeny for seed plants and the standardised effect sizes of the phylogenetic diversity metrics 'mean pairwise distance' (SESmpd) and 'mean nearest taxon distance' (SESmntd), we found that species were more closely-related at low latitudes in woody communities. In herbaceous communities, species were more closely-related at high latitudes than at intermediate latitudes, and the strength of this effect depended on biogeographic realm and vegetation type. Possible causes of this difference are contrasting patterns of speciation and dispersal. Most woody lineages evolved in the tropics, with many gymnosperms but few angiosperms adapting to high latitudes. In contrast, the recent evolution of herbaceous lineages such as grasses in young habitat types may drive coexistence of closely-related species at high latitudes. Our results show that high species richness commonly observed at low latitudes is not associated with high phylogenetic diversity.
Head and eye compensatory movements known as vestibulo-ocular and vestibulo-cervical reflexes are essential to stay orientated in space while moving. We have used a previously developed methodology focused on the detailed mathematical description of head compensatory movements in frogs without the need for any surgical procedures on the examined specimens. Our comparative study comprising 35 species of frogs from different phylogenetic backgrounds revealed species-specific head compensatory abilities ensuring gaze stabilization. Moreover, we found a strong phylogenetic signal highlighting the great ability of compensatory head movements in families of Pyxicephalidae and Rhacophoridae from the Natatanura group. By contrast, families of Dendrobatidae and Microhylidae exhibited only poor or no head compensatory movements. Contrary to our expectation, the results did not corroborate an ecomorphological hypothesis anticipating a close relationship between ecological parameters and the head compensatory movements. We did not find any positive association between more complex (3D structured, arboreal or aquatic) habitats or more saltatory behavior and elevated abilities of head compensatory movements. Moreover, we found compensatory movements in most basal Archeobatrachia, giving an indication of common ancestry of these abilities in frogs that are variously pronounced in particular families. We hypothesize that the uncovered proper gaze stabilization during locomotion provided by the higher head compensatory abilities can improve or even enable visual perception of the prey. We interpret this completely novel finding as a possible gyroscopic advantage in a foraging context. We discuss putative consequences of such advanced neuromotor skills for diversification and ecological success of the Natatanura group.
- MeSH
- fylogeneze * MeSH
- hlava - pohyby * MeSH
- oční fixace * MeSH
- žáby klasifikace fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Primate bocaparvoviruses were first described in 2005, since then further human and gorilla bocaparvoviruses have been identified. To uncover diversity of non-human primates' bocaparvoviruses, their phylogenetic relationship and potential to cross the host species barrier, we tested 153 fecal samples from 17 captive primate species. The only one captive female of central chimpanzee (coded CPZh2) has been identified as bocaparvovirus positive. Based on the full genome phylogenetic analyses, CPZh2 strain shows close relationship to HBoV3 and GBoV. Further recombination analysis confirmed expected mosaic origin of CPZh2 strain. According the phylogenetic position, following the ICTV recommendations, we propose a novel genotype within the Primate bocaparvovirus 1 species infecting chimpanzee.
- MeSH
- Bocavirus klasifikace genetika izolace a purifikace MeSH
- feces virologie MeSH
- fylogeneze MeSH
- genom virový MeSH
- genotyp MeSH
- infekce viry z čeledi Parvoviridae veterinární virologie MeSH
- molekulární evoluce MeSH
- nemoci lidoopů virologie MeSH
- Pan troglodytes virologie MeSH
- rekombinace genetická MeSH
- sekvenční analýza DNA metody MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Group C rotavirus (RVC) has been described to be a causative agent of gastroenteritis in humans and animals. In the current study, the presence of porcine RVC was confirmed in 25.6 % of 293 porcine faecal samples collected from seven Czech farms. A significantly larger (p < 0.05) number of RVC-positive samples was detected in groups of finisher pigs and post-weaning piglets (4-12 weeks of age). Phylogenetic analysis of nine RVC-positive Czech strains and their comparison with available sequence data for the gene encoding RVC group antigen VP6 revealed two separate lineages within porcine cluster I1.
- MeSH
- antigeny virové genetika MeSH
- feces virologie MeSH
- fylogeneze MeSH
- genetická variace MeSH
- lidé MeSH
- nemoci prasat epidemiologie virologie MeSH
- prasata MeSH
- prevalence MeSH
- rotavirové infekce epidemiologie veterinární virologie MeSH
- Rotavirus klasifikace MeSH
- shluková analýza MeSH
- virové plášťové proteiny genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
New data on spermiogenesis and the ultrastructure of spermatozoa of 'true' tapeworms (Eucestoda) are summarized. Since 2001, more than 50 species belonging to most orders of the Eucestoda have been studied or reinvestigated, particularly members of the Caryophyllidea, Spathebothriidea, Diphyllobothriidea, Bothriocephalidea, Trypanorhyncha, Tetraphyllidea, Proteocephalidea, and Cyclophyllidea. A new classification of spermatozoa of eucestodes into seven basic types is proposed and a key to their identification is given. For the first time, a phylogenetic tree inferred from spermatological characters is provided. New information obtained in the last decade has made it possible to fill numerous gaps in the character data matrix, enabling us to carry out a more reliable analysis of the evolution of ultrastructural characters of sperm and spermiogenesis in eucestodes. The tree is broadly congruent with those based on morphological and molecular data, indicating that convergent evolution of sperm characters in cestodes may not be as common as in other invertebrate taxa. The main gaps in the current knowledge of spermatological characters are mapped and topics for future research are outlined, with special emphasis on those characters that might provide additional information about the evolution of tapeworms and their spermatozoa. Future studies should be focused on representatives of those major groups (families and orders) in which molecular data indicate paraphyly or polyphyly (e.g. 'Tetraphyllidea' and Trypanorhyncha) and on those that have a key phylogenetic position among eucestodes (e.g. Diphyllidea, 'Tetraphyllidea', Lecanicephalidea, Nippotaeniidea).
- MeSH
- biologická evoluce MeSH
- Cestoda genetika fyziologie MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- spermie ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH