polymeric
Dotaz
Zobrazit nápovědu
- MeSH
- finanční podpora výzkumu jako téma MeSH
- kyselina aminolevulová analýza diagnostické užití MeSH
- lidé MeSH
- otrava olovem diagnóza krev moč MeSH
- polarografie metody využití MeSH
- porfyriny analýza diagnostické užití MeSH
- spektrofotometrie metody využití MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
- MeSH
- farmaceutické pomocné látky MeSH
- lékové formy MeSH
- polymery MeSH
- rozpouštědla MeSH
- roztoky MeSH
- Publikační typ
- přehledy MeSH
Acta dermato-venereologica
54 s. : obr., tab., bibliogr.
Nowadays, emerging radiolabeled nanosystems are revolutionizing medicine in terms of diagnostics, treatment, and theranostics. These radionuclides include polymeric nanoparticles (NPs), liposomal carriers, dendrimers, magnetic iron oxide NPs, silica NPs, carbon nanotubes, and inorganic metal-based nanoformulations. Between these nano-platforms, polymeric NPs have gained attention in the biomedical field due to their excellent properties, such as their surface to mass ratio, quantum properties, biodegradability, low toxicity, and ability to absorb and carry other molecules. In addition, NPs are capable of carrying high payloads of radionuclides which can be used for diagnostic, treatment, and theranostics depending on the radioactive material linked. The radiolabeling process of nanoparticles can be performed by direct or indirect labeling process. In both cases, the most appropriate must be selected in order to keep the targeting properties as preserved as possible. In addition, radionuclide therapy has the advantage of delivering a highly concentrated absorbed dose to the targeted tissue while sparing the surrounding healthy tissues. Said another way, radioactive polymeric NPs represent a promising prospect in the treatment and diagnostics of cardiovascular diseases such as cardiac ischemia, infectious diseases such as tuberculosis, and other type of cancer cells or tumors.
- MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- nádory farmakoterapie MeSH
- nanočástice chemie MeSH
- nosiče léků chemie MeSH
- polymery chemie MeSH
- radionuklidy aplikace a dávkování chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In this work, we have studied the structural and functional linkage between lamin A/C, nuclear actin, and organization of chromosome territories (CTs) in mammary carcinoma MCF-7 cells. Selective down-regulation of lamin A/C expression led to disruption of the lamin A/C perinuclear layer and disorganization of lamin-bound emerin complexes at the inner nuclear membrane. The silencing of lamin A/C expression resulted in a decrease in the volume and surface area of chromosome territories, especially in chromosomes with high heterochromatin content. Inhibition of actin polymerization led to relaxation of the structure of chromosome territories, and an increase in the volumes and surface areas of the chromosome territories of human chromosomes 1, 2 and 13. The results show an important role of polymeric actin in the organization of the nuclei and the chromosome territories.
- MeSH
- aktiny metabolismus MeSH
- buněčné jádro metabolismus MeSH
- down regulace MeSH
- financování organizované MeSH
- genom lidský genetika MeSH
- konfokální mikroskopie MeSH
- lamin typ A metabolismus MeSH
- lidé MeSH
- lidské chromozomy metabolismus MeSH
- nádorové buněčné linie MeSH
- tvar buňky MeSH
- Check Tag
- lidé MeSH
Tissue engineering is an interdisciplinary field that uses a combination of cells, suitable biomaterials and bioactive molecules to engineer the desired tissue and restore lost function. These principles have quickly begun to spread to the therapy of multiple diseases, including depigmentation disorders. The most common depigmentation disorder is vitiligo, a disease with deep psychosocial implications. Thanks to their unique properties, electrospun polymeric nanofibers represent a material suitable for tissue engineering applications. Furthermore, they may be functionalized with platelets, cells that contain a wide spectrum of growth factors and chemokines. The aim of this paper was to evaluate the functionalization of polymeric nanofibers with platelets and their effects in melanocyte culture. The scaffolds were visualized using scanning electron microscopy, the metabolic activity and proliferation of melanocytes was determined using MTS assay and dsDNA quantification, respectively. Furthermore, the melanocytes were stained and visualized using confocal microscopy. The acquired data showed that poly-ε-caprolactone functionalized with platelets promoted the viability and proliferation of melanocytes. According to the results, such a functionalized scaffold combining nanofibers and platelets may be suitable for melanocyte culture.
- MeSH
- lidé MeSH
- nanovlákna MeSH
- tkáňové inženýrství * MeSH
- trombocyty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH