stilbenoid Dotaz Zobrazit nápovědu
The stilbenoids, a group of naturally occurring phenolic compounds, are found in a variety of plants, including some berries that are used as food or for medicinal purposes. They are known to be beneficial for human health as anti-inflammatory, chemopreventive, and antioxidative agents. We have investigated a group of 19 stilbenoid substances in vitro using a cellular model of THP-1 macrophage-like cells and pyocyanin-induced oxidative stress to evaluate their antioxidant or pro-oxidant properties. Then we have determined any effects that they might have on the expression of the enzymes catalase, glutathione peroxidase, and heme oxygenase-1, and their effects on the activation of Nrf2. The experimental results showed that these stilbenoids could affect the formation of reactive oxygen species in a cellular model, producing either an antioxidative or pro-oxidative effect, depending on the structure pinostilbene (2) worked as a pro-oxidant and also decreased expression of catalase in the cell culture. Piceatannol (4) had shown reactive oxygen species (ROS) scavenging activity, whereas isorhapontigenin (18) had a mild direct antioxidant effect and activated Nrf2-antioxidant response element (ARE) system and elevated expression of Nrf2 and catalase. Their effects shown on cells in vitro warrant their further study in vivo.
- MeSH
- antioxidační responzivní elementy účinky léků MeSH
- antioxidancia chemie farmakologie MeSH
- buňky Hep G2 MeSH
- faktor 2 související s NF-E2 genetika MeSH
- lidé MeSH
- peroxidace lipidů účinky léků MeSH
- pyokyanin chemie MeSH
- stilbeny chemie farmakologie MeSH
- thiobarbituráty chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
ETHNOPHARMACOLOGICAL RELEVANCE: Macaranga Thou. (Euphorbiaceae) is a large genus that comprises over 300 species distributed between Western Africa and the islands of the South Pacific. Plants of this genus have a long-standing history of use in traditional medicine for different purposes, including the treatment of inflammation. Fresh and dried leaves of certain Macaranga species (e.g. M. tanarius (L.) Müll.Arg.), have been used to treat cuts, bruises, boils, swellings, sores and covering of wounds in general. Several reports described Macaranga spp. being a rich source of polyphenols, such as prenylated stilbenoids and flavonoids, mostly responsible for its biological activity. Similarly, an abundant content of prenylated stilbenes was also described in M. siamensis S.J.Davies, species recently identified (2001) in Thailand. While the respective biological activity of the prenylated stilbenes from M. siamensis was poorly investigated to date, our recent study pointed out the interest as the natural source of several novel anti-inflammatory stilbenoids isolated from this species. AIM OF THE STUDY: This work investigated the potential anti-inflammatory effects of the stilbenoid macasiamenene F (MF) isolated from M. siamensis S.J.Davies (Euphorbiaceae) on the lipopolysaccharide (LPS)-induced inflammation-like response of monocytes and microglia, major cells involved in the peripheral and central inflammatory response, respectively. MATERIALS AND METHODS: LPS-induced stimulation of TLR4 signaling led to the activation of inflammatory pathways in in vitro models of THP-1 and THP-1-XBlue™-MD2-CD14 human monocytes, BV-2 mouse microglia, and an ex vivo model of brain-sorted mouse microglia. The ability of the stilbenoid MF to intervene in the IкB/NF-кB and MAPKs/AP-1 inflammatory cascade was investigated. The gene and protein expressions of the pro-inflammatory cytokines IL-1β and TNF-α were evaluated at the transcription and translation levels. The protective effect of MF against LPS-triggered microglial loss was assessed by cell counting and the LDH assay. RESULTS: MF demonstrated beneficial effects, reducing both monocyte and microglial inflammation as assessed in vitro. It efficiently inhibited the degradation of IкBα, thereby reducing the NF-кB activity and TNF-α expression in human monocytes. Furthermore, the LPS-induced expression of IL-1β and TNF-α in microglia was dampened by pre-, co-, or post-treatment with MF. In addition to its anti-inflammatory effect, MF demonstrated a cytoprotective effect against the LPS-induced death of BV-2 microglia. CONCLUSION: Our research into anti-inflammatory and protective effects of MF has shown that it is a promising candidate for further in vitro and in vivo investigations of MF interventions with respect to acute and chronic inflammation, including potentially beneficial effects on the inflammatory component of brain diseases such as stroke and Alzheimer's disease.
- MeSH
- antiflogistika izolace a purifikace farmakologie terapeutické užití MeSH
- cytoprotekce účinky léků fyziologie MeSH
- Euphorbiaceae * MeSH
- kultivované buňky MeSH
- lidé MeSH
- lipopolysacharidy toxicita MeSH
- mediátory zánětu antagonisté a inhibitory metabolismus MeSH
- mikroglie účinky léků metabolismus MeSH
- monocyty účinky léků metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- prenylace účinky léků fyziologie MeSH
- rostlinné extrakty izolace a purifikace farmakologie terapeutické užití MeSH
- stilbeny izolace a purifikace farmakologie terapeutické užití MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zánět farmakoterapie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Resveratrol and other natural stilbenoids, including piceatannol, pterostilbene, and gnetol, are well-known anti-inflammatory compounds with indisputable activity in vitro as well as in vivo. Their molecular targets include inducible nitric oxide synthase, cyclooxygenases, leukotrienes, nuclear factor kappa B, tumor necrosis factor α, interleukins and many more. This anti-inflammatory activity together with their antioxidant activity is believed to stand behind their other positive health effects against cancer, cardiovascular and neurodegenerative diseases or diabetes. Thus, they are nowadays commercially marketed as nutraceuticals. Naturally, they are present in wine, grapes or berries. However, there is a rigorous debate about the real effect of these compounds on human health. It is argued that the concentration of stilbenoids in food and beverages is too low to have any therapeutic potential and this concentration is further reduced by their low bioavailability and extensive metabolism. Therefore, this review focuses on in vitro, in vivo, preclinical as well as clinical data available for various natural stilbenoids and summarizes the anti-inflammatory targets on molecular level, compares the relevance of the experimental studies, discusses the metabolism of stilbenoids and the potential activity of their metabolites and relates this knowledge to human health. Moreover, the ways to augment stilbenoidś efficacy are suggested with special focus on multitargeted therapy and nanocarriers.
- MeSH
- antiflogistika * farmakokinetika farmakologie terapeutické užití MeSH
- lidé MeSH
- stilbeny * farmakokinetika farmakologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Stilbenoids are dietary phenolics with notable biological effects on humans. Epidemiological, clinical, and nutritional studies from recent years have confirmed the significant biological effects of stilbenoids, such as oxidative stress protection and the prevention of degenerative diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases. Stilbenoids are intensively metabolically transformed by colon microbiota, and their corresponding metabolites might show different or stronger biological activity than their parent molecules. The aim of the present study was to determine the metabolism of six stilbenoids (resveratrol, oxyresveratrol, piceatannol, thunalbene, batatasin III, and pinostilbene), mediated by colon microbiota. Stilbenoids were fermented in an in vitro faecal fermentation system using fresh faeces from five different donors as an inoculum. The samples of metabolized stilbenoids were collected at 0, 2, 4, 8, 24, and 48 h. Significant differences in the microbial transformation among stilbene derivatives were observed by liquid chromatography mass spectrometry (LC/MS). Four stilbenoids (resveratrol, oxyresveratrol, piceatannol and thunalbene) were metabolically transformed by double bond reduction, dihydroxylation, and demethylation, while batatasin III and pinostilbene were stable under conditions simulating the colon environment. Strong inter-individual differences in speed, intensity, and pathways of metabolism were observed among the faecal samples obtained from the donors.
- MeSH
- chromatografie kapalinová MeSH
- feces mikrobiologie MeSH
- fenoly chemie metabolismus MeSH
- fermentace MeSH
- hmotnostní spektrometrie MeSH
- kolon metabolismus mikrobiologie MeSH
- lidé MeSH
- mikrobiota * MeSH
- resveratrol chemie metabolismus MeSH
- stilbeny chemie metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Stilbenoids are interesting natural compounds with pleiotropic in vitro and in vivo activity. Their well-documented biological properties include anti-inflammatory effects, anticancer effects, effects on longevity, and many others. Therefore, they are nowadays commonly found in foods and dietary supplements, and used as a part of treatment strategy in various types of diseases. Bioactivity of stilbenoids strongly depends on different types of factors such as dosage, food composition, and synergistic effects with other plant secondary metabolites such as polyphenols or vitamins. In this review, we summarize the existing in vitro, in vivo, and clinical data from published studies addressing the optimization of bioavailability of stilbenoids. Stilbenoids face low bioavailability due to their chemical structure. This can be improved by the use of novel drug delivery systems or enhancers, which are discussed in this review. Current in vitro and in vivo evidence suggests that both approaches are very promising and increase the absorption of the original substance by several times. However, data from more clinical trials are required.
- MeSH
- biologická dostupnost MeSH
- lidé MeSH
- potravní doplňky MeSH
- resveratrol chemie farmakokinetika terapeutické užití MeSH
- stilbeny chemie farmakokinetika terapeutické užití MeSH
- systémy cílené aplikace léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Dietary phenolics or polyphenols are mostly metabolized by the human gut microbiota. These metabolites appear to confer the beneficial health effects attributed to phenolics. Microbial composition affects the type of metabolites produced. Reciprocally, phenolics modulate microbial composition. Understanding this relationship could be used to positively impact health by phenolic supplementation and thus create favorable colonic conditions. This study explored the effect of six stilbenoids (batatasin III, oxyresveratrol, piceatannol, pinostilbene, resveratrol, thunalbene) on the gut microbiota composition. Stilbenoids were anaerobically fermented with fecal bacteria from four donors, samples were collected at 0 and 24 h, and effects on the microbiota were assessed by 16S rRNA gene sequencing. Statistical tests identified affected microbes at three taxonomic levels. Observed microbial composition modulation by stilbenoids included a decrease in the Firmicutes to Bacteroidetes ratio, a decrease in the relative abundance of strains from the genus Clostridium, and effects on the family Lachnospiraceae. A frequently observed effect was a further decrease of the relative abundance when compared to the control. An opposite effect to the control was observed for Faecalibacterium prausnitzii, whose relative abundance increased. Observed effects were more frequently attributed to resveratrol and piceatannol, followed by thunalbene and batatasin III.
Stilbenoids are important components of foods (e.g., peanuts, grapes, various edible berries), beverages (wine, white tea), and medicinal plants. Many publications have described the anti-inflammatory potential of stilbenoids, including the widely known trans-resveratrol and its analogues. However, comparatively little information is available regarding the activity of their prenylated derivatives. One new prenylated stilbenoid (2) was isolated from Artocarpus altilis and characterized structurally based on 1D and 2D NMR analysis and HRMS. Three other prenylated stilbenoids were prepared synthetically (9-11). Their antiphlogistic potential was determined by testing them together with known natural prenylated stilbenoids from Macaranga siamensis and Artocarpus heterophyllus in both cell-free and cell assays. The inhibition of 5-lipoxygenase (5-LOX) was also shown by simulated molecular docking for the most active stilbenoids in order to elucidate the mode of interaction between these compounds and the enzyme. Their effects on the pro-inflammatory nuclear factor-κB (NF-κB) and the activator protein 1 (AP-1) signaling pathway were also analyzed. The THP1-XBlue-MD2-CD14 cell line was used as a model for determining their anti-inflammatory potential, and lipopolysaccharide (LPS) stimulation of Toll-like receptor 4 induced a signaling cascade leading to the activation of NF-κB/AP-1. The ability of prenylated stilbenoids to attenuate the production of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) was further evaluated using LPS-stimulated THP-1 macrophages.
- MeSH
- buněčné linie MeSH
- cyklooxygenasy metabolismus MeSH
- inhibitory enzymů farmakologie MeSH
- lidé MeSH
- lipoxygenasy metabolismus MeSH
- NF-kappa B antagonisté a inhibitory MeSH
- prenylace * MeSH
- signální transdukce účinky léků MeSH
- stilbeny farmakologie MeSH
- transkripční faktor AP-1 antagonisté a inhibitory MeSH
- zánět prevence a kontrola MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
69 stran ; 22 cm
- MeSH
- opiové alkaloidy terapeutické užití MeSH
- opium terapeutické užití MeSH
- stilbeny terapeutické užití MeSH
- Konspekt
- Farmacie. Farmakologie
- NLK Obory
- farmacie a farmakologie
- NLK Publikační typ
- studie