The plant extract aristolochic acid (AA), containing aristolochic acids I (AAI) and II (AAII) as major components, causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), unique renal diseases associated with upper urothelial cancer. Recently (Chemical Research in Toxicology 33(11), 2804-2818, 2020), we showed that the in vivo metabolism of AAI and AAII in Wistar rats is influenced by their co-exposure (i.e., AAI/AAII mixture). Using the same rat model, we investigated how exposure to the AAI/AAII mixture can influence AAI and AAII DNA adduct formation (i.e., AA-mediated genotoxicity). Using 32P-postlabelling, we found that AA-DNA adduct formation was increased in the livers and kidneys of rats treated with AAI/AAII mixture compared to rats treated with AAI or AAII alone. Measuring the activity of enzymes involved in AA metabolism, we showed that enhanced AA-DNA adduct formation might be caused partially by both decreased AAI detoxification as a result of hepatic CYP2C11 inhibition during treatment with AAI/AAII mixture and by hepatic or renal NQO1 induction, the key enzyme predominantly activating AA to DNA adducts. Moreover, our results indicate that AAII might act as an inhibitor of AAI detoxification in vivo. Consequently, higher amounts of AAI might remain in liver and kidney tissues, which can be reductively activated, resulting in enhanced AAI DNA adduct formation. Collectively, these results indicate that AAII present in the plant extract AA enhances the genotoxic properties of AAI (i.e., AAI DNA adduct formation). As patients suffering from AAN and BEN are always exposed to the plant extract (i.e., AAI/AAII mixture), our findings are crucial to better understanding host factors critical for AAN- and BEN-associated urothelial malignancy.
- MeSH
- adukty DNA metabolismus MeSH
- DNA nádorová metabolismus MeSH
- karcinogeneze * chemicky indukované metabolismus MeSH
- karcinogeny toxicita MeSH
- krysa rodu rattus MeSH
- kyseliny aristolochové toxicita MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Balkan endemic nephropathy is a chronic tubulointerstitial disease with insidious onset, slowly progressing to end-stage renal disease and frequently associated with urothelial carcinoma of the upper urinary tract (UTUC). It was described in South-East Europe at the Balkan peninsula in rural areas around tributaries of the Danube River. After decades of intensive investigation, the causative factor was identified as the environmental phytotoxin aristolochic acid (AA) contained in Aristolochia clematitis, a common plant growing in wheat fields that was ingested through home-baked bread. AA initially was involved in the outbreak of cases of rapidly progressive renal fibrosis reported in Belgium after intake of root extracts of Aristolochia fangchi imported from China. A high prevalence of UTUC was found in these patients. The common molecular link between Balkan and Belgian nephropathy cases was the detection of aristolactam-DNA adducts in renal tissue and UTUC. These adducts are not only biomarkers of prior exposure to AA, but they also trigger urothelial malignancy by inducing specific mutations (A:T to T:A transversion) in critical genes of carcinogenesis, including the tumor-suppressor TP53. Such mutational signatures are found in other cases worldwide, particularly in Taiwan, highlighting the general public health issue of AA exposure by traditional phytotherapies.
- MeSH
- adukty DNA MeSH
- Aristolochia MeSH
- balkánská nefropatie chemicky indukované diagnóza patologie terapie MeSH
- karcinogeny toxicita MeSH
- karcinom z přechodných buněk chemicky indukované MeSH
- kyseliny aristolochové toxicita MeSH
- lidé MeSH
- nádory ledvin chemicky indukované MeSH
- nádory močovodu chemicky indukované MeSH
- plošný screening MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
OBJECTIVES: This study aimed to assess the biological impact of occupational exposure to diesel exhaust (DE) including DE particles (DEP) from heavy-duty diesel-powered equipment in Norwegian tunnel finishing workers (TFW). METHODS: TFW (n=69) and referents (n=69) were investigated for bulky DNA adducts (by 32P-postlabelling) and expression of microRNAs (miRNAs) (by small RNA sequencing) in peripheral blood mononuclear cells (PBMC), as well as circulating free arachidonic acid (AA) and eicosanoid profiles in plasma (by liquid chromatography-tandem mass spectrometry). RESULTS: PBMC from TFW showed significantly higher levels of DNA adducts compared with referents. Levels of DNA adducts were also related to smoking habits. Seventeen miRNAs were significantly deregulated in TFW. Several of these miRNAs are related to carcinogenesis, apoptosis and antioxidant effects. Analysis of putative miRNA-gene targets revealed deregulation of pathways associated with cancer, alterations in lipid molecules, steroid biosynthesis and cell cycle. Plasma profiles showed higher levels of free AA and 15-hydroxyeicosatetraenoic acid, and lower levels of prostaglandin D2 and 9-hydroxyoctadecadienoic acid in TFW compared with referents. CONCLUSION: Occupational exposure to DE/DEP is associated with biological alterations in TFW potentially affecting lung homoeostasis, carcinogenesis, inflammation status and the cardiovascular system. Of particular importance is the finding that tunnel finishing work is associated with an increased level of DNA adducts formation in PBMC.
- MeSH
- adukty DNA krev MeSH
- biologické markery krev MeSH
- dospělí MeSH
- inhalační expozice analýza MeSH
- látky znečišťující vzduch v pracovním prostředí analýza MeSH
- leukocyty mononukleární chemie MeSH
- lidé středního věku MeSH
- lidé MeSH
- lineární modely MeSH
- lipidy krev MeSH
- mikro RNA krev MeSH
- pracovní expozice škodlivé účinky MeSH
- průřezové studie MeSH
- stavebnictví * MeSH
- výfukové emise vozidel toxicita MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Norsko MeSH
Exposure to aristolochic acid (AA) is associated with human nephropathy and urothelial cancer. The tumour suppressor TP53 is a critical gene in carcinogenesis and frequently mutated in AA-induced urothelial tumours. We investigated the impact of p53 on AAI-induced nephrotoxicity and DNA damage in vivo by treating Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice with 3.5 mg/kg body weight (bw) AAI daily for 2 or 6 days. Renal histopathology showed a gradient of intensity in proximal tubular injury from Trp53(+/+) to Trp53(-/-) mice, especially after 6 days. The observed renal injury was supported by nuclear magnetic resonance (NMR)-based metabonomic measurements, where a consistent Trp53 genotype-dependent trend was observed for urinary metabolites that indicate aminoaciduria (i.e. alanine), lactic aciduria (i.e. lactate) and glycosuria (i.e. glucose). However, Trp53 genotype had no impact on AAI-DNA adduct levels, as measured by 32P-postlabelling, in either target (kidney and bladder) or non-target (liver) tissues, indicating that the underlying mechanisms of p53-related AAI-induced nephrotoxicity cannot be explained by differences in AAI genotoxicity. Performing gas chromatography-mass spectrometry (GC-MS) on kidney tissues showed metabolic pathways affected by AAI treatment, but again Trp53 status did not clearly impact on such metabolic profiles. We also cultured primary mouse embryonic fibroblasts (MEFs) derived from Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice and exposed them to AAI in vitro (50 µM for up to 48 h). We found that Trp53 genotype impacted on the expression of NAD(P)H:quinone oxidoreductase (Nqo1), a key enzyme involved in AAI bioactivation. Nqo1 induction was highest in Trp53(+/+) MEFs and lowest in Trp53(-/-) MEFs; and it correlated with AAI-DNA adduct formation, with lowest adduct levels being observed in AAI-exposed Trp53(-/-) MEFs. Overall, our results clearly demonstrate that p53 status impacts on AAI-induced renal injury, but the underlying mechanism(s) involved remain to be further explored. Despite the impact of p53 on AAI bioactivation and DNA damage in vitro, such effects were not observed in vivo.
- MeSH
- cytochrom P-450 CYP1A1 genetika MeSH
- exprese genu účinky léků MeSH
- fibroblasty účinky léků metabolismus patologie MeSH
- kultivované buňky MeSH
- kyseliny aristolochové metabolismus toxicita MeSH
- mutageny metabolismus toxicita MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- NAD(P)H dehydrogenasa (chinon) genetika MeSH
- nádorový supresorový protein p53 genetika MeSH
- poškození DNA * MeSH
- proximální tubuly ledvin účinky léků metabolismus patologie MeSH
- vyšetření funkce ledvin MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: Vandetanib¸ lenvatinib, and cabozantinib are tyrosine kinase inhibitors (TKIs) targeting VEGFR subtypes 1 and 2, EGFR and the RET-tyrosine kinase, thus considered as multiple TKIs. These TKIs have already been approved for treating patients suffering from thyroid cancer and renal cell carcinoma. Ellipticine, a DNA-damaging drug, is another anticancer agent that is effective against certain tumors of the thyroid gland, ovarian carcinoma, breast cancer and osteolytic breast cancer metastasis. Its anticancer efficiency is dictated by its oxidation with cytochrome P450 (CYP) and peroxidase enzymes. A number of studies testing the effectiveness of individual anticancer drugs, the pharmacological efficiencies of which are affected by their metabolism, alone or in a combination with other cytostatics demonstrated that such combination can have both positive and negative effects on treatment regimen. The aim of this study was to study the effect of vandetanib, lenvatinib and cabozantinib on oxidation of ellipticine which dictates its pharmacological efficiency. METHODS: Ellipticine oxidation catalyzed by hepatic microsomes, recombinant CYP enzymes and peroxidases (horseradish peroxidase, lactoperoxidase and myeloperoxidase) and the effect of TKIs (vandetanib, lenvatinib and cabozantinib) on this oxidation were analyzed by HPLC used for separation of ellipticine metabolites and quantification of their amounts formed during oxidation. RESULTS: The CYP enzymatic system oxidizes ellipticine up to five metabolites (9-hydroxy-, 12-hydroxy-, 13-hydroxy-, 7-hydroxyellipticine, and ellipticine N2- oxide), while peroxidases form predominantly ellipticine dimer. Ellipticine oxidation catalyzed by rat and human hepatic microsomes was inhibited by vandetanib and cabozantinib, but essentially no inhibition was caused by lenvatinib. Of individual CYP enzymes catalyzing oxidation of ellipticine, TKIs inhibited oxidation of ellipticine catalyzed by CYP2D6 > 2D1 > 2C9 > 3A1 > 3A4, the CYP enzymes participating in ellipticine oxidation to metabolites increasing the ellipticine anticancer efficiency. On the contrary, they have essentially no inhibition effect on ellipticine oxidation catalyzed by CYP1A1 and 1A2, which are the enzymes that predominantly detoxify this drug. All tested TKIs had essentially no effect on oxidation of ellipticine by used peroxidases. CONCLUSION: The results found demonstrate that TKIs vandetanib, lenvatinib and cabozantinib cause a decrease in oxidative activation of DNA-damaging drug ellipticine by several CYP enzymes in vitro which might lead to a decrease in its pharmacological efficiency. In contrast, they practically do not influence its detoxification catalyzed by CYP1A1, 1A2 and peroxidases. The present study indicates that tested TKIs seem not to have a potency to increase ellipticine anticancer efficiency.
- MeSH
- anilidy farmakologie MeSH
- chinazoliny farmakologie MeSH
- chinoliny farmakologie MeSH
- elipticiny farmakokinetika MeSH
- fenylmočovinové sloučeniny farmakologie MeSH
- inhibitory cytochromu P450 farmakologie MeSH
- jaterní mikrozomy účinky léků MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- oxidace-redukce účinky léků MeSH
- peroxidasy antagonisté a inhibitory MeSH
- piperidiny farmakologie MeSH
- pyridiny farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Although ellipticine (Elli) is an efficient anticancer agent, it exerts several adverse effects. One approach to decrease the adverse effects of drugs is their encapsulation inside a suitable nanocarrier, allowing targeted delivery to tumour tissue whereas avoiding healthy cells. We constructed a nanocarrier from apoferritin (Apo) bearing ellipticine, ApoElli, and subsequently characterized. The nanocarrier exhibits a narrow size distribution suggesting its suitability for entrapping the hydrophobic ellipticine molecule. Ellipticine was released from ApoElli into the water environment under pH 6.5, but only less than 20% was released at pH 7.4. The interaction of ApoElli with microsomal membrane particles containing cytochrome P450 (CYP) biotransformation enzymes accelerated the release of ellipticine from this nanocarrier making it possible to be transferred into this membrane system even at pH 7.4 and facilitating CYP-mediated metabolism. Reactive metabolites were formed not only from free ellipticine, but also from ApoElli, and both generated covalent DNA adducts. ApoElli was toxic in UKF-NB-4 neuroblastoma cells, but showed significantly lower cytotoxicity in non-malignant fibroblast HDFn cells. Ellipticine either free or released from ApoElli was concentrated in the nuclei of neuroblastoma cells, concentrations of which being significantly higher in nuclei of UKF-NB-4 than in HDFn cells. In HDFn the higher amounts of ellipticine were sequestrated in lysosomes. The extent of ApoElli entering the nuclei in UKF-NB-4 cells was lower than that of free ellipticine and correlated with the formation of ellipticine-derived DNA adducts. Our study indicates that the ApoElli form of ellipticine seems to be a promising tool for neuroblastoma treatment.
- MeSH
- adukty DNA genetika metabolismus MeSH
- apoferritiny chemie farmakologie MeSH
- cytochrom P-450 CYP3A metabolismus MeSH
- elipticiny chemie farmakologie MeSH
- fosforylace MeSH
- histony metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nanočástice * MeSH
- neuroblastom farmakoterapie enzymologie genetika patologie MeSH
- nosiče léků * MeSH
- příprava léků MeSH
- protinádorové látky chemie farmakologie MeSH
- uvolňování léčiv MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The anticancer drug ellipticine exerts its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes. The present study has examined the role of cytochrome P450 oxidoreductase (POR) and cytochrome b5 (Cyb5), electron donors to P450 enzymes, in the CYP-mediated metabolism and disposition of ellipticine in vivo. We used Hepatic Reductase Null (HRN) and Hepatic Cytochrome b5/P450 Reductase Null (HBRN) mice. HRN mice have POR deleted specifically in hepatocytes; HBRN mice also have Cyb5 deleted in the liver. Mice were treated once with 10 mg/kg body weight ellipticine (n = 4/group) for 24 h. Ellipticine-DNA adduct levels measured by 32P-postlabelling were significantly lower in HRN and HBRN livers than in wild-type (WT) livers; however no significant difference was observed between HRN and HBRN livers. Ellipticine-DNA adduct formation in WT, HRN and HBRN livers correlated with Cyp1a and Cyp3a enzyme activities measured in hepatic microsomes in the presence of NADPH confirming the importance of P450 enzymes in the bioactivation of ellipticine in vivo. Hepatic microsomal fractions were also utilised in incubations with ellipticine and DNA in the presence of NADPH, cofactor for POR, and NADH, cofactor for Cyb5 reductase (Cyb5R), to examine ellipticine-DNA adduct formation. With NADPH adduct formation decreased as electron donors were lost which correlated with the formation of the reactive metabolites 12- and 13-hydroxy-ellipticine in hepatic microsomes. No difference in adduct formation was observed in the presence of NADH. Our study demonstrates that Cyb5 contributes to the P450-mediated bioactivation of ellipticine in vitro, but not in vivo.
- MeSH
- adukty DNA metabolismus MeSH
- aromatické hydroxylasy metabolismus MeSH
- cytochrom-B(5)-reduktasa nedostatek genetika MeSH
- cytochromy b5 nedostatek genetika MeSH
- elipticiny metabolismus farmakologie MeSH
- fenotyp MeSH
- genotyp MeSH
- hepatocyty enzymologie MeSH
- jaterní mikrozomy enzymologie MeSH
- játra enzymologie MeSH
- metabolická aktivace MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- NADPH-cytochrom c-reduktasa metabolismus MeSH
- protinádorové látky metabolismus farmakologie MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Endocrine disruptors (EDs) are compounds that interfere with the balance of the endocrine system by mimicking or antagonising the effects of endogenous hormones, by altering the synthesis and metabolism of natural hormones, or by modifying hormone receptor levels. The synthetic estrogen 17α-ethinylestradiol (EE2) and the environmental carcinogen benzo[a]pyrene (BaP) are exogenous EDs whereas the estrogenic hormone 17β-estradiol is a natural endogenous ED. Although the biological effects of these individual EDs have partially been studied previously, their toxicity when acting in combination has not yet been investigated. Here we treated Wistar rats with BaP, EE2 and estradiol alone or in combination and studied the influence of EE2 and estradiol on: (i) the expression of cytochrome P450 (CYP) 1A1 and 1B1 in rat liver on the transcriptional and translational levels; (ii) the inducibility of these CYP enzymes by BaP in this rat organ; (iii) the formation of BaP-DNA adducts in rat liver in vivo; and (iv) the generation of BaP-induced DNA adducts after activation of BaP with hepatic microsomes of rats exposed to BaP, EE2 and estradiol and with recombinant rat CYP1A1 in vitro. BaP acted as a strong and moderate inducer of CYP1A1 and 1B1 in rat liver, respectively, whereas EE2 or estradiol alone had no effect on the expression of these enzymes. However, when EE2 was administered to rats together with BaP, it significantly decreased the potency of BaP to induce CYP1A1 and 1B1 gene expression. For EE2, but not estradiol, this also correlated with a reduction of BaP-induced CYP1A1 enzyme activity in rat hepatic microsomes. Further, while EE2 and estradiol did not form covalent adducts with DNA, they affected BaP-derived DNA adduct formations in vivo and in vitro. The observed decrease in BaP-DNA adduct levels in rat liver in vivo resulted from the inhibition of CYP1A1-mediated BaP bioactivation by EE2 and estradiol. Our results indicate that BaP genotoxicity mediated through its activation by CYP1A1 in rats in vivo is modulated by estradiol and its synthetic derivative EE2.
- MeSH
- benzopyren toxicita MeSH
- cytochrom P-450 CYP1A1 biosyntéza genetika MeSH
- endokrinní disruptory toxicita MeSH
- estradiol toxicita MeSH
- ethinylestradiol toxicita MeSH
- jaterní mikrozomy účinky léků enzymologie MeSH
- krysa rodu rattus MeSH
- potkani Wistar MeSH
- regulace genové exprese enzymů * účinky léků MeSH
- synergismus léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Polycyclic aromatic hydrocarbons such as benzo[a]pyrene (BaP) can induce cytochrome P450 1A1 (CYP1A1) via a p53-dependent mechanism. The effect of different p53-activating chemotherapeutic drugs on CYP1A1 expression, and the resultant effect on BaP metabolism, was investigated in a panel of isogenic human colorectal HCT116 cells with differing TP53 status. Cells that were TP53(+/+), TP53(+/-) or TP53(-/-) were treated for up to 48 h with 60 μM cisplatin, 50 μM etoposide or 5 μM ellipticine, each of which caused high p53 induction at moderate cytotoxicity (60-80% cell viability). We found that etoposide and ellipticine induced CYP1A1 in TP53(+/+) cells but not in TP53(-/-) cells, demonstrating that the mechanism of CYP1A1 induction is p53-dependent; cisplatin had no such effect. Co-incubation experiments with the drugs and 2.5 μM BaP showed that: (i) etoposide increased CYP1A1 expression in TP53(+/+) cells, and to a lesser extent in TP53(-/-) cells, compared to cells treated with BaP alone; (ii) ellipticine decreased CYP1A1 expression in TP53(+/+) cells in BaP co-incubations; and (iii) cisplatin did not affect BaP-mediated CYP1A1 expression. Further, whereas cisplatin and etoposide had virtually no influence on CYP1A1-catalysed BaP metabolism, ellipticine treatment strongly inhibited BaP bioactivation. Our results indicate that the underlying mechanisms whereby etoposide and ellipticine regulate CYP1A1 expression must be different and may not be linked to p53 activation alone. These results could be relevant for smokers, who are exposed to increased levels of BaP, when prescribing chemotherapeutic drugs. Beside gene-environment interactions, more considerations should be given to potential drug-environment interactions during chemotherapy.
- MeSH
- adukty DNA metabolismus MeSH
- benzopyren farmakokinetika farmakologie MeSH
- cisplatina farmakologie MeSH
- cytochrom P-450 CYP1A1 biosyntéza metabolismus MeSH
- cytochrom P-450 CYP3A biosyntéza metabolismus MeSH
- elipticiny farmakokinetika farmakologie MeSH
- enzymová indukce účinky léků MeSH
- etoposid farmakologie MeSH
- geny p53 MeSH
- HCT116 buňky MeSH
- karcinogeny farmakokinetika farmakologie MeSH
- kolorektální nádory farmakoterapie genetika metabolismus patologie MeSH
- lidé MeSH
- metabolická aktivace MeSH
- nádorový supresorový protein p53 nedostatek genetika metabolismus MeSH
- poškození DNA MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Extra-hepatic metabolism of xenobiotics by epithelial tissues has evolved as a self-defence mechanism but has potential to contribute to the local activation of carcinogens. Bladder epithelium (urothelium) is bathed in excreted urinary toxicants and pro-carcinogens. This study reveals how differentiation affects cytochrome P450 (CYP) activity and the role of NADPH:P450 oxidoreductase (POR). CYP1A1 and CYP1B1 transcripts were inducible in normal human urothelial (NHU) cells maintained in both undifferentiated and functional barrier-forming differentiated states in vitro. However, ethoxyresorufin O-deethylation (EROD) activity, the generation of reactive BaP metabolites and BaP-DNA adducts, were predominantly detected in differentiated NHU cell cultures. This gain-of-function was attributable to the expression of POR, an essential electron donor for all CYPs, which was significantly upregulated as part of urothelial differentiation. Immunohistology of muscle-invasive bladder cancer (MIBC) revealed significant overall suppression of POR expression. Stratification of MIBC biopsies into "luminal" and "basal" groups, based on GATA3 and cytokeratin 5/6 labeling, showed POR over-expression by a subgroup of the differentiated luminal tumors. In bladder cancer cell lines, CYP1-activity was undetectable/low in basal PORlo T24 and SCaBER cells and higher in the luminal POR over-expressing RT4 and RT112 cells than in differentiated NHU cells, indicating that CYP-function is related to differentiation status in bladder cancers. This study establishes POR as a predictive biomarker of metabolic potential. This has implications in bladder carcinogenesis for the hepatic versus local activation of carcinogens and as a functional predictor of the potential for MIBC to respond to prodrug therapies.
- MeSH
- buněčná diferenciace MeSH
- čipová analýza tkání MeSH
- cytochrom P-450 CYP1A1 genetika MeSH
- cytochrom P450 CYP1B1 genetika MeSH
- down regulace MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory močového měchýře genetika metabolismus MeSH
- regulace genové exprese u nádorů MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- urotel cytologie metabolismus MeSH
- xenobiotika farmakologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH