Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.5% genomes), and performed systematic reanalysis for 6,447 individuals (3,592 male, 2,855 female) with previously undiagnosed rare diseases from 6,004 families. We established a collaborative, two-level expert review infrastructure that allowed a genetic diagnosis in 506 (8.4%) families. Of 552 disease-causing variants identified, 464 (84.1%) were single-nucleotide variants or short insertions/deletions. These variants were either located in recently published novel disease genes (n = 67), recently reclassified in ClinVar (n = 187) or reclassified by consensus expert decision within Solve-RD (n = 210). Bespoke bioinformatics analyses identified the remaining 15.9% of causative variants (n = 88). Ad hoc expert review, parallel to the systematic reanalysis, diagnosed 249 (4.1%) additional families for an overall diagnostic yield of 12.6%. The infrastructure and collaborative networks set up by Solve-RD can serve as a blueprint for future further scalable international efforts. The resource is open to the global rare-disease community, allowing phenotype, variant and gene queries, as well as genome-wide discoveries.
- MeSH
- Databases, Genetic MeSH
- Exome genetics MeSH
- Genome, Human genetics MeSH
- Genomics * methods MeSH
- Humans MeSH
- Pedigree MeSH
- Computational Biology methods MeSH
- Rare Diseases * genetics diagnosis MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
INTRODUCTION: The identification of type 1 diabetes at an early presymptomatic stage has clinical benefits. These include a reduced risk of diabetic ketoacidosis (DKA) at the clinical manifestation of the disease and a significant reduction in clinical symptoms. The European action for the Diagnosis of Early Non-clinical Type 1 diabetes For disease Interception (EDENT1FI) represents a pioneering effort to advance early detection of type 1 diabetes through public health screening. With the EDENT1FI Master Protocol, the project aims to harmonise and standardise screening for early-stage type 1 diabetes and care. METHODS AND ANALYSIS: Public health islet autoantibody screening is conducted in the Czech Republic, Denmark, Germany, Italy, Poland, Portugal, Sweden and the UK. Between November 2023 (start date) and October 2028 (planned end date), an estimated number of 200 000 children and adolescents aged 1-17 years are expected to be screened. Screening is performed in capillary blood, examining different islet autoantibodies (autoantibodies against insulin, glutamic acid decarboxylase-65, insulinoma-associated antigen-2 and/or zinc transporter-8). Positive screening results undergo confirmation through a second antibody method. A second (venous) blood sample is requested if at least two autoantibodies are detected, to confirm the autoantibody status. Children and adolescents with confirmed two or more autoantibodies are invited to metabolic staging (oral glucose tolerance test, haemoglobin A1c (HbA1c), random glucose, optionally continuous glucose monitoring); an educational programme and recommendations for monitoring are provided. The feasibility and acceptability of screening are evaluated by feedback questionnaires. Pseudonymised data is collated in the EDENT1FI Registry. Study outcomes include country-specific screening rates, prevalences of stage 1 and stage 2 type 1 diabetes, number in EDENT1FI Registry, proportion with DKA and symptoms at clinical diagnosis and median HbA1c. ETHICS AND DISSEMINATION: Following the EDENT1FI Master Protocol, site-specific protocols are developed and approved by local ethics committees (Technical University of Munich, Medical Faculty, Nr. 70/14; Medizinische Hochschule Hannover, Nr. 9588_BO_S_2021; Technische Universität Dresden, Nr. BO-EK-356082020; Center for Sundhed Region Hovedstaden, Nr. H-22053116; Swedish Ethical Review Authority, Nr. 2023-00312-01; National Health Service Health Research Authority and Health Care Research Wales, IRAS (Integrated Research Application System) project ID 309252; Italian National Institute of Health, National ethics committee for clinical trials of public research bodies (EPR) and other national public institutions, Prot. PRE BIO CE Nr. 0059835; Charles University in Prague, Ethics Committee for Multi-Centric Clinical Trials of the University Hopital Motol and 2nd Faculty of Medicine, Nr. 1271/23; Bioethics Committee at the Medical University of Warsaw, Nr. 21/2024 and KB/6/R/2024; Associação Protectora dos Diabéticos de Portugal, Nr. 211/2024). Results are disseminated through peer-reviewed journals and conference presentations and will be shared openly.
- MeSH
- Autoantibodies * blood MeSH
- Early Diagnosis * MeSH
- Diabetes Mellitus, Type 1 * diagnosis MeSH
- Child MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Mass Screening * methods MeSH
- Child, Preschool MeSH
- Check Tag
- Child MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
BACKGROUND: Infliximab selectively targets recently activated effector cells and, as an induction agent, might enable the safe elimination of mycophenolate from maintenance immunosuppression in kidney transplantation. METHODS: This is a phase II international multicenter open-label single-arm confidence interval (CI)-based clinical trial of the BIO-DrIM EU consortium aimed at assessing the efficacy and safety of rabbit antithymocyte globulin and infliximab induction in kidney transplantation. Sixty-seven primary kidney transplant recipients at low risk (panel-reactive antibodies <20%, no donor-specific antibodies [DSA]) received rabbit antithymocyte globulin (2 × 1.5 mg/kg, postoperative days 0 and 1) and infliximab (5 mg/kg, postoperative day 2), followed by mycophenolate-free tacrolimus-based immunosuppression for 12 mo. The primary endpoint was efficacy failure, defined as a composite of acute rejection, graft loss, or poor graft function (estimated glomerular filtration rate <40 mL/min) at 12 mo and was based on the endpoint of the comparator study. Additionally, a historical propensity-matched control cohort was established. RESULTS: Primary endpoint occurred in 22 of 67 patients (32.84%), with upper bound of an exact 1-sided 95% CI of 43.47%, which met the predefined criteria (efficacy failure of <40% and upper-bound 95% CI of <50%) and was similar in the historical matched cohort. By 12 mo, 79.1% of patients remained on the study protocol. Lower rates of BK replication (6% versus 22.4%; P = 0.013) but higher rates of de novo DSAs (11.9% versus 1.5%; P = 0.039) were observed in the study cohort. CONCLUSIONS: A similar efficacy of the study immunosuppression regimen to the comparator study and the historical matched cohort was found. However, a higher de novo DSA emergence points to an increased risk of antibody-mediated rejection (NCT04114188).
- MeSH
- Antilymphocyte Serum * MeSH
- Immunosuppressive Agents adverse effects MeSH
- Immunosuppression Therapy MeSH
- Infliximab adverse effects MeSH
- Enzyme Inhibitors MeSH
- Humans MeSH
- Graft Survival MeSH
- Antibodies MeSH
- Graft Rejection prevention & control MeSH
- Tacrolimus * adverse effects MeSH
- Treatment Outcome MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial MeSH
- Multicenter Study MeSH
Environmental compartments polluted with animal charcoal from the skin and hide cottage industries are rich in toxic heavy metals and diverse hydrocarbon classes, some of which are carcinogenic, mutagenic, and genotoxic, and thus require a bio-based eco-benign decommission strategies. A shotgun metagenomic approach was used to decipher the microbiome, hydrocarbon degradation genes, and heavy metal resistome of a microbial consortium (FN8) from an animal-charcoal polluted site enriched with fluorene. Structurally, the FN8 microbial consortium consists of 26 phyla, 53 classes, 119 orders, 245 families, 620 genera, and 1021 species. The dominant phylum, class, order, family, genus, and species in the consortium are Proteobacteria (51.37%), Gammaproteobacteria (39.01%), Bacillales (18.09%), Microbulbiferaceae (11.65%), Microbulbifer (12.21%), and Microbulbifer sp. A4B17 (19.65%), respectively. The microbial consortium degraded 57.56% (28.78 mg/L) and 87.14% (43.57 mg/L) of the initial fluorene concentration in 14 and 21 days. Functional annotation of the protein sequences (ORFs) of the FN8 metagenome using the KEGG GhostKOALA, KofamKOALA, NCBI's conserved domain database, and BacMet revealed the detection of hydrocarbon degradation genes for benzoate, aminobenzoate, polycyclic aromatic hydrocarbons (PAHs), chlorocyclohexane/chlorobenzene, chloroalkane/chloroalkene, toluene, xylene, styrene, naphthalene, nitrotoluene, and several others. The annotation also revealed putative genes for the transport, uptake, efflux, and regulation of heavy metals such as arsenic, cadmium, chromium, mercury, nickel, copper, zinc, and several others. Findings from this study have established that members of the FN8 consortium are well-adapted and imbued with requisite gene sets and could be a potential bioresource for on-site depuration of animal charcoal polluted sites.
- MeSH
- Biodegradation, Environmental MeSH
- Charcoal MeSH
- Fluorenes MeSH
- Gammaproteobacteria * MeSH
- Soil Pollutants * analysis MeSH
- Humans MeSH
- Microbiota * genetics MeSH
- Polycyclic Aromatic Hydrocarbons * metabolism MeSH
- Soil MeSH
- Soil Microbiology MeSH
- Metals, Heavy * MeSH
- Hydrocarbons MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Maize is a widely known crop in cereals for its importance as staple food, and the endophytic bacteria which dwell within the maize tissues may have impact on the yield and quality of crop. In this study, endophytic bacteria associated with maize were characterized based on their plant growth promoting traits and identified at molecular level to provide valuable information for developing a microbial consortium to enhance the productivity of crop. The bacterial strains having multi-trait plant growth promoting attributes were studied quantitatively, and highest phosphate solubilization was shown by the isolate KL3E1 (573 μg/mL), while K solubilization has reported maximum of 39 mg/L by the isolate PdS3E1, IAA production was found maximum by the isolate LL3E1 (165 μg/mL), and maximum siderophore production (93%) was shown by the isolate VaR3E1 and exopolysaccharide production was found highest by LS3E3 (65 mg/L). The efficient isolates identified by 16S rRNA gene sequencing were found as Gordonia hongkongensis, Microbacterium hydrothermale, Kosakonia radicincitans, Kosakonia cowanii, Priestia megaterium, Priestia aryabhattai, Klebsiella pneumoniae, Cellulosimicrobium funkei, Bacillus licheniformis, Pantoea dispersa, Pseudomonas aeruginosa, and Methylorubrum populi. The results showed that these multi-trait plant growth promoting endophytic bacterial isolates could be used as bio inoculants for sustainable improvement of maize crop productivity.
Human biomonitoring (HBM) studies have highlighted widespread daily exposure to environmental chemicals. Some of these are suspected to contribute to adverse health outcomes such as reproductive, neurological, and metabolic disorders, among other developmental and chronic impairments. One of the objectives of the H2020 European Human Biomonitoring Initiative (HBM4EU) was the development of informative effect biomarkers for application in a more systematic and harmonized way in large-scale European HBM studies. The inclusion of effect biomarkers would complement exposure data with mechanistically-based information on early and late adverse effects. For this purpose, a stepwise strategy was developed to identify and implement a panel of validated effect biomarkers in European HBM studies. This work offers an overview of the complete procedure followed, from comprehensive literature search strategies, selection of criteria for effect biomarkers and their classification and prioritization, based on toxicological data and adverse outcomes, to pilot studies for their analytical, physiological, and epidemiological validation. We present the example of one study that demonstrated the mediating role of the effect biomarker status of brain-derived neurotrophic factor BDNF in the longitudinal association between infant bisphenol A (BPA) exposure and behavioral function in adolescence. A panel of effect biomarkers has been implemented in the HBM4EU Aligned Studies as main outcomes, including traditional oxidative stress, reproductive, and thyroid hormone biomarkers. Novel biomarkers of effect, such as DNA methylation status of BDNF and kisspeptin (KISS) genes were also evaluated as molecular markers of neurological and reproductive health, respectively. A panel of effect biomarkers has also been applied in HBM4EU occupational studies, such as micronucleus analysis in lymphocytes and reticulocytes, whole blood comet assay, and malondialdehyde, 8-oxo-2'-deoxyguanosine and untargeted metabolomic profile in urine, to investigate, for example, biological changes in response to hexavalent chromium Cr(VI) exposure. The use of effect biomarkers in HBM4EU has demonstrated their ability to detect early biological effects of chemical exposure and to identify subgroups that are at higher risk. The roadmap developed in HBM4EU confirms the utility of effect biomarkers, and support one of the main objectives of HBM research, which is to link exposure biomarkers to mechanistically validated effect and susceptibility biomarkers in order to better understand the public health implications of human exposure to environmental chemicals.
With the rapid advancement of sequencing technologies, next generation sequencing (NGS) analysis has been widely applied in cancer genomics research. More recently, NGS has been adopted in clinical oncology to advance personalized medicine. Clinical applications of precision oncology require accurate tests that can distinguish tumor-specific mutations from artifacts introduced during NGS processes or data analysis. Therefore, there is an urgent need to develop best practices in cancer mutation detection using NGS and the need for standard reference data sets for systematically measuring accuracy and reproducibility across platforms and methods. Within the SEQC2 consortium context, we established paired tumor-normal reference samples and generated whole-genome (WGS) and whole-exome sequencing (WES) data using sixteen library protocols, seven sequencing platforms at six different centers. We systematically interrogated somatic mutations in the reference samples to identify factors affecting detection reproducibility and accuracy in cancer genomes. These large cross-platform/site WGS and WES datasets using well-characterized reference samples will represent a powerful resource for benchmarking NGS technologies, bioinformatics pipelines, and for the cancer genomics studies.
- MeSH
- Benchmarking MeSH
- Genome, Human * MeSH
- Genomics MeSH
- Precision Medicine MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Neoplasms genetics MeSH
- Whole Genome Sequencing * MeSH
- Exome Sequencing * MeSH
- Computational Biology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Dataset MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Reproductive longevity is essential for fertility and influences healthy ageing in women1,2, but insights into its underlying biological mechanisms and treatments to preserve it are limited. Here we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in about 200,000 women of European ancestry. These common alleles were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations3. The identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR-associated genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increases fertility and extends reproductive life in mice. Causal inference analyses using the identified genetic variants indicate that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases the risk of hormone-sensitive cancers. These findings provide insight into the mechanisms that govern ovarian ageing, when they act, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease.
- MeSH
- Alleles MeSH
- Genome-Wide Association Study MeSH
- Checkpoint Kinase 1 genetics MeSH
- Checkpoint Kinase 2 genetics MeSH
- Diabetes Mellitus, Type 2 MeSH
- Diet MeSH
- Longevity genetics MeSH
- Adult MeSH
- Fertility genetics MeSH
- Genetic Predisposition to Disease MeSH
- Bone and Bones metabolism MeSH
- Middle Aged MeSH
- Humans MeSH
- Menopause genetics MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Ovary metabolism MeSH
- Menopause, Premature genetics MeSH
- Primary Ovarian Insufficiency genetics MeSH
- Fragile X Mental Retardation Protein genetics MeSH
- Aging genetics MeSH
- Uterus MeSH
- Healthy Aging genetics MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Asia, Eastern MeSH
- Europe MeSH
IMPORTANCE: Large-scale neuroimaging studies have revealed group differences in cortical thickness across many psychiatric disorders. The underlying neurobiology behind these differences is not well understood. OBJECTIVE: To determine neurobiologic correlates of group differences in cortical thickness between cases and controls in 6 disorders: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and schizophrenia. DESIGN, SETTING, AND PARTICIPANTS: Profiles of group differences in cortical thickness between cases and controls were generated using T1-weighted magnetic resonance images. Similarity between interregional profiles of cell-specific gene expression and those in the group differences in cortical thickness were investigated in each disorder. Next, principal component analysis was used to reveal a shared profile of group difference in thickness across the disorders. Analysis for gene coexpression, clustering, and enrichment for genes associated with these disorders were conducted. Data analysis was conducted between June and December 2019. The analysis included 145 cohorts across 6 psychiatric disorders drawn from the ENIGMA consortium. The numbers of cases and controls in each of the 6 disorders were as follows: ADHD: 1814 and 1602; ASD: 1748 and 1770; BD: 1547 and 3405; MDD: 2658 and 3572; OCD: 2266 and 2007; and schizophrenia: 2688 and 3244. MAIN OUTCOMES AND MEASURES: Interregional profiles of group difference in cortical thickness between cases and controls. RESULTS: A total of 12 721 cases and 15 600 controls, ranging from ages 2 to 89 years, were included in this study. Interregional profiles of group differences in cortical thickness for each of the 6 psychiatric disorders were associated with profiles of gene expression specific to pyramidal (CA1) cells, astrocytes (except for BD), and microglia (except for OCD); collectively, gene-expression profiles of the 3 cell types explain between 25% and 54% of variance in interregional profiles of group differences in cortical thickness. Principal component analysis revealed a shared profile of difference in cortical thickness across the 6 disorders (48% variance explained); interregional profile of this principal component 1 was associated with that of the pyramidal-cell gene expression (explaining 56% of interregional variation). Coexpression analyses of these genes revealed 2 clusters: (1) a prenatal cluster enriched with genes involved in neurodevelopmental (axon guidance) processes and (2) a postnatal cluster enriched with genes involved in synaptic activity and plasticity-related processes. These clusters were enriched with genes associated with all 6 psychiatric disorders. CONCLUSIONS AND RELEVANCE: In this study, shared neurobiologic processes were associated with differences in cortical thickness across multiple psychiatric disorders. These processes implicate a common role of prenatal development and postnatal functioning of the cerebral cortex in these disorders.
- MeSH
- Principal Component Analysis MeSH
- Bipolar Disorder diagnostic imaging pathology MeSH
- Depressive Disorder, Major diagnostic imaging pathology MeSH
- Child MeSH
- Adult MeSH
- Gene Expression physiology MeSH
- Attention Deficit Disorder with Hyperactivity diagnostic imaging pathology MeSH
- Cohort Studies MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Adolescent MeSH
- Young Adult MeSH
- Cerebral Cortex cytology diagnostic imaging growth & development pathology MeSH
- Obsessive-Compulsive Disorder diagnostic imaging pathology MeSH
- Autism Spectrum Disorder diagnostic imaging pathology MeSH
- Child, Preschool MeSH
- Schizophrenia diagnostic imaging pathology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Case-Control Studies MeSH
- Computational Biology MeSH
- Human Development physiology MeSH
- Fetal Development physiology MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Child, Preschool MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
ELIXIR is a pan-European intergovernmental organisation for life science that aims to coordinate bioinformatics resources in a single infrastructure across Europe; bioinformatics training is central to its strategy, which aims to develop a training community that spans all ELIXIR member states. In an evidence-based approach for strengthening bioinformatics training programmes across Europe, the ELIXIR Training Platform, led by the ELIXIR EXCELERATE Quality and Impact Assessment Subtask in collaboration with the ELIXIR Training Coordinators Group, has implemented an assessment strategy to measure quality and impact of its entire training portfolio. Here, we present ELIXIR's framework for assessing training quality and impact, which includes the following: specifying assessment aims, determining what data to collect in order to address these aims, and our strategy for centralised data collection to allow for ELIXIR-wide analyses. In addition, we present an overview of the ELIXIR training data collected over the past 4 years. We highlight the importance of a coordinated and consistent data collection approach and the relevance of defining specific metrics and answer scales for consortium-wide analyses as well as for comparison of data across iterations of the same course.
- MeSH
- Algorithms MeSH
- Biomedical Research MeSH
- Databases, Factual MeSH
- Program Evaluation MeSH
- Education, Continuing MeSH
- Curriculum MeSH
- Reproducibility of Results MeSH
- Quality Control * MeSH
- Data Collection MeSH
- Software MeSH
- User-Computer Interface MeSH
- Computational Biology education standards MeSH
- Research Personnel MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH