Code biology
Dotaz
Zobrazit nápovědu
Colorectal cancer (CRC) ranks as the second most prevalent malignancy globally, highlighting the urgent need for more effective diagnostic and therapeutic strategies, as well as a deeper understanding of its molecular basis. Extensive research has demonstrated that cells actively secrete extracellular vesicles (EVs) to mediate intercellular communication at both proximal and distal sites. In this study, we conducted a comprehensive analysis of the RNA content of small extracellular vesicles (sEVs) secreted into the culture media of five frequently utilised CRC cell lines (RKO, HCT116, HCT15, HT29, and DLD1). RNA sequencing data revealed significant insights into the RNA profiles of these sEVs, identifying nine protein-coding genes and fourteen long non-coding RNA (lncRNA) genes that consistently ranked among the top 30 most abundant across all cell lines. Notably, the genes found in sEVs were highly similar among the cell lines, indicating a conserved molecular signature. Several of these genes have been previously documented in the context of cancer biology, while others represent novel discoveries. These findings provide valuable insights into the molecular cargo of sEVs in CRC, potentially unveiling novel biomarkers and therapeutic targets.
- MeSH
- extracelulární vezikuly * metabolismus genetika MeSH
- HCT116 buňky MeSH
- kolorektální nádory * genetika patologie metabolismus MeSH
- lidé MeSH
- nádorové biomarkery genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- regulace genové exprese u nádorů MeSH
- RNA dlouhá nekódující genetika MeSH
- sekvenční analýza RNA MeSH
- stanovení celkové genové exprese MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Recent advances in protein 3D structure prediction using deep learning have focused on the importance of amino acid residue-residue connections (i.e., pairwise atomic contacts) for accuracy at the expense of mechanistic interpretability. Therefore, we decided to perform a series of analyses based on an alternative framework of residue-residue connections making primary use of the TOP2018 dataset. This framework of residue-residue connections is derived from amino acid residue pairing models both historic and new, all based on genetic principles complemented by relevant biophysical principles. Of these pairing models, three new models (named the GU, Transmuted and Shift pairing models) exhibit the highest observed-over-expected ratios and highest correlations in statistical analyses with various intra- and inter-chain datasets, in comparison to the remaining models. In addition, these new pairing models are universally frequent across different connection ranges, secondary structure connections, and protein sizes. Accordingly, following further statistical and other analyses described herein, we have come to a major conclusion that all three pairing models together could represent the basis of a universal proteomic code (second genetic code) sufficient, in and of itself, to "encode" for both protein folding mechanisms and protein-protein interactions.
- MeSH
- aminokyseliny * chemie genetika MeSH
- databáze proteinů MeSH
- lidé MeSH
- molekulární modely * MeSH
- proteiny * chemie genetika metabolismus MeSH
- proteomika * MeSH
- sbalování proteinů * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Fibroblasts, the most abundant cell type in the human body, play crucial roles in biological processes such as inflammation and cancer progression. They originate from the mesoderm or neural-crest-derived ectomesenchyme. Ectomesenchyme-derived fibroblasts contribute to facial formation and do not express HOX genes during development. The expression and role of the HOX genes in adult fibroblasts is not known. We investigated whether the developmental pattern persists into adulthood and under pathological conditions, such as cancer. We collected adult fibroblasts of ectomesenchymal and mesodermal origins from distinct body parts. The isolated fibroblasts were characterised by immunocytochemistry, and their transcriptome was analysed by whole genome profiling. Significant differences were observed between normal fibroblasts from the face (ectomesenchyme) and upper limb (mesoderm), particularly in genes associated with limb development, including HOX genes, e.g., HOXA9 and HOXD9. Notably, the pattern of HOX gene expression remained consistent postnatally, even in fibroblasts from pathological tissues, including inflammatory states and cancer-associated fibroblasts from primary and metastatic tumours. Therefore, the distinctive HOX gene expression pattern can serve as an indicator of the topological origin of fibroblasts. The influence of cell position and HOX gene expression in fibroblasts on disease progression warrants further investigation.
- MeSH
- dospělí MeSH
- fibroblasty * metabolismus cytologie MeSH
- homeoboxové geny MeSH
- homeodoménové proteiny metabolismus genetika MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezoderm * metabolismus cytologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Circular RNAs (circRNAs) make up approximately 10% of the human transcriptome. CircRNAs belong to the broad group of non-coding RNAs and characteristically are formed by backsplicing into a stable circular loop. Their main role is to regulate transcription through the inhibition of miRNAs' expression, termed miRNA sponging. CircRNAs promote tumorigenesis/lymphomagenesis by competitively binding to miRNAs at miRNA binding sites. In diffuse large B-cell lymphoma (DLBCL), several circRNAs have been identified and their expression is related to both progression and response to therapy. DLBCL is the most prevalent and aggressive subtype of B-cell lymphomas and accounts for about 25% to 30% of all non-Hodgkin lymphomas. DLBCL displays great heterogeneity concerning histopathology, biology, and genetics. Patients who have relapsed or have refractory disease after first-line therapy have a very poor prognosis, demonstrating an important unmet need for new treatment options. As more circRNAs are identified in the future, we will better understand their biological roles and potential use in treating cancer, including DLBCL. For example, circAmotl1 promotes nuclear translocation of MYC and upregulation of translational targets of MYC, thus enhancing lymphomagenesis. Another example is circAPC, which is significantly downregulated in DLBCL and correlates with disease aggressiveness and poor prognosis. CircAPC increases expression of the host gene adenomatous polyposis coli (APC), and in doing so inactivates the canonical Wnt/β-catenin signaling and restrains DLBCL growth. MiRNAs belong to the non-coding regulatory molecules that significantly contribute to lymphomagenesis through their target mRNAs. In DLBCL, among the highly expressed miRNAs, are miR-155-5p and miR-21-5p, which regulate NF-ĸB and PI3K/AKT signaling pathways. The aim of this review is to describe the function and mechanism of regulation of circRNAs on miRNAs' expression in DLBCL. This will help us to better understand the regulatory network of circRNA/miRNA/mRNA, and to propose novel therapeutic targets to treat DLBCL.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Limited availability constrains the implementation of 225Ac, the most promising α emitter for targeted therapy, in clinical practice. Proton activation of 226Ra is one of few realistic solutions to this problem. We have therefore measured cross sections of relevant 226Ra(p,xn) nuclear reactions in the energy range of 12.0 to 17.2 MeV. The obtained results allowed us to deduce the yield of 224Ac, 225Ac, and 226Ac. The consequences of our data to predictions of production capacity and radionuclidic purity of 225Ac are thoroughly discussed, and their comparison with previous measurements and with the prediction of the TALYS 1.96 nuclear reaction model code run with default parameters are provided.
- MeSH
- aktinium * chemie MeSH
- fosfor * chemie MeSH
- radiochemie MeSH
- radium * chemie MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Targeted alpha therapy (TAT) is an effective option for cancer treatment. To maximize its efficacy and minimize side effects, carriers must deliver radionuclides to target tissues. Most of the nuclides used in TAT decay via the alpha cascade, producing several radioactive daughter nuclei with sufficient energy to escape from the original carrier. Therefore, studying these daughter atoms is crucial in the search for new carriers. Nanoparticles have potential as carriers due to their structure, which can prevent the escape of daughter atoms and reduce radiation exposure to non-target tissues. This work focuses on determining the released activity of 221Fr and 213Bi resulting from the decay of 225Ac labelled TiO2 nanoparticles. RESULTS: Labelling of TiO2 nanoparticles has shown high sorption rates of 225Ac and its progeny, 221Fr and 213Bi, with over 92 % of activities sorbed on the nanoparticle surface for all measured radionuclides. However, in the quasi-dynamic in vitro system, the released activity of 221Fr and 213Bi is strongly dependent on the nanoparticles concentration, ranging from 15 % for a concentration of 1 mg/mL to approximately 50 % for a nanoparticle concentration of 10 μg/mL in saline solution. The released activities of 213Bi were lower, with a maximum value of around 20 % for concentrations of 0.05, 0.025, and 0.01 mg/mL. The leakage of 225Ac and its progeny was tested in various biological matrices. Minimal released activity was measured in saline at around 10 % after 48 h, while the maximum activity was measured in blood serum and plasma at 20 %. The amount of 225Ac released into the media was minimal (<3 %). The in vitro results were confirmed in a healthy mouse model. The difference in %ID/g was clearly visible immediately after dissection and again after 6 h when 213Bi reached equilibrium with 225Ac. CONCLUSION: The study verified the potential release of 225Ac progeny from the labelled TiO2 nanoparticles. Experiments were performed to determine the dependence of released activity on nanoparticle concentration and the biological environment. The results demonstrated the high stability of the prepared 225Ac@TiO2 NPs and the potential release of progeny over time. In vivo studies confirmed our hypothesis. The data obtained suggest that the daughter atoms can escape from the original carrier and follow their own biological pathways in the organism.
- MeSH
- aktinium * chemie MeSH
- izotopové značení MeSH
- myši MeSH
- nanočástice * chemie MeSH
- radionuklidy chemie MeSH
- titan * chemie MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Systems biology aims to understand living organisms through mathematically modeling their behaviors at different organizational levels, ranging from molecules to populations. Modeling involves several steps, from determining the model purpose to developing the mathematical model, implementing it computationally, simulating the model's behavior, evaluating, and refining the model. Importantly, model simulation results must be reproducible, ensuring that other researchers can obtain the same results after writing the code de novo and/or using different software tools. Guidelines to increase model reproducibility have been published. However, reproducibility remains a major challenge in this field. In this paper, we tackle this challenge for physiologically-based pharmacokinetic (PBPK) models, which represent the pharmacokinetics of chemicals following exposure in humans or animals. We summarize recommendations for PBPK model reporting that should apply during model development and implementation, in order to ensure model reproducibility and comprehensibility. We make a proposal aiming to harmonize abbreviations used in PBPK models. To illustrate these recommendations, we present an original and reproducible PBPK model code in MATLAB, alongside an example of MATLAB code converted to Systems Biology Markup Language format using MOCCASIN. As directions for future improvement, more tools to convert computational PBPK models from different software platforms into standard formats would increase the interoperability of these models. The application of other systems biology standards to PBPK models is encouraged. This work is the result of an interdisciplinary collaboration involving the ELIXIR systems biology community. More interdisciplinary collaborations like this would facilitate further harmonization and application of good modeling practices in different systems biology fields.
- MeSH
- biologické modely * MeSH
- farmakokinetika * MeSH
- lidé MeSH
- počítačová simulace MeSH
- reprodukovatelnost výsledků MeSH
- software * MeSH
- systémová biologie * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The International Classification of Diseases (ICD) hierarchical taxonomy is used for so-called clinical coding of medical reports, typically presented in unstructured text. In the Czech Republic, it is currently carried out manually by a so-called clinical coder. However, due to the human factor, this process is error-prone and expensive. The coder needs to be properly trained and spends significant effort on each report, leading to occasional mistakes. The main goal of this paper is to propose and implement a system that serves as an assistant to the coder and automatically predicts diagnosis codes. These predictions are then presented to the coder for approval or correction, aiming to enhance efficiency and accuracy. We consider two classification tasks: main (principal) diagnosis; and all diagnoses. Crucial requirements for the implementation include minimal memory consumption, generality, ease of portability, and sustainability. The main contribution lies in the proposal and evaluation of ICD classification models for the Czech language with relatively few training parameters, allowing swift utilisation on the prevalent computer systems within Czech hospitals and enabling easy retraining or fine-tuning with newly available data. First, we introduce a small transformer-based model for each task followed by the design of a transformer-based "Four-headed" model incorporating four distinct classification heads. This model achieves comparable, sometimes even better results, against four individual models. Moreover this novel model significantly economises memory usage and learning time. We also show that our models achieve comparable results against state-of-the-art English models on the Mimic IV dataset even though our models are significantly smaller.
- MeSH
- elektronické zdravotní záznamy MeSH
- klinické kódování * MeSH
- lidé MeSH
- mezinárodní klasifikace nemocí * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Heart failure (HF) is an end-stage of many cardiac diseases and one of the main causes of death worldwide. The current management of this disease remains suboptimal. The adult mammalian heart was considered a post-mitotic organ. However, several reports suggest that it may possess modest regenerative potential. Adult cardiac progenitor cells (CPCs), the main players in the cardiac regeneration, constitute, as it may seem, a heterogenous group of cells, which remain quiescent in physiological conditions and become activated after an injury, contributing to cardiomyocytes renewal. They can mediate their beneficial effects through direct differentiation into cardiac cells and activation of resident stem cells but majorly do so through paracrine release of factors. CPCs can secrete cytokines, chemokines, and growth factors as well as exosomes, rich in proteins, lipids and non-coding RNAs, such as miRNAs and YRNAs, which contribute to reparation of myocardium by promoting angiogenesis, cardioprotection, cardiomyogenesis, anti-fibrotic activity, and by immune modulation. Preclinical studies assessing cardiac progenitor cells and cardiac progenitor cells-derived exosomes on damaged myocardium show that administration of cardiac progenitor cells-derived exosomes can mimic effects of cell transplantation. Exosomes may become new promising therapeutic strategy for heart regeneration nevertheless there are still several limitations as to their use in the clinic. Key questions regarding their dosage, safety, specificity, pharmacokinetics, pharmacodynamics and route of administration remain outstanding. There are still gaps in the knowledge on basic biology of exosomes and filling them will bring as closer to translation into clinic.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Shared input to a population of neurons induces noise correlations, which can decrease the information carried by a population activity. Inhibitory feedback in recurrent neural networks can reduce the noise correlations and thus increase the information carried by the population activity. However, the activity of inhibitory neurons is costly. This inhibitory feedback decreases the gain of the population. Thus, depolarization of its neurons requires stronger excitatory synaptic input, which is associated with higher ATP consumption. Given that the goal of neural populations is to transmit as much information as possible at minimal metabolic costs, it is unclear whether the increased information transmission reliability provided by inhibitory feedback compensates for the additional costs. We analyze this problem in a network of leaky integrate-and-fire neurons receiving correlated input. By maximizing mutual information with metabolic cost constraints, we show that there is an optimal strength of recurrent connections in the network, which maximizes the value of mutual information-per-cost. For higher values of input correlation, the mutual information-per-cost is higher for recurrent networks with inhibitory feedback compared to feedforward networks without any inhibitory neurons. Our results, therefore, show that the optimal synaptic strength of a recurrent network can be inferred from metabolically efficient coding arguments and that decorrelation of the input by inhibitory feedback compensates for the associated increased metabolic costs.