Core-shell
Dotaz
Zobrazit nápovědu
The broader application of liposomes in regenerative medicine is hampered by their short half-life and inefficient retention at the site of application. These disadvantages could be significantly reduced by their combination with nanofibers. We produced 2 different nanofiber-liposome systems in the present study, that is, liposomes blended within nanofibers and core/shell nanofibers with embedded liposomes. Herein, we demonstrate that blend electrospinning does not conserve intact liposomes. In contrast, coaxial electrospinning enables the incorporation of liposomes into nanofibers. We report polyvinyl alcohol-core/poly-ε-caprolactone-shell nanofibers with embedded liposomes and show that they preserve the enzymatic activity of encapsulated horseradish peroxidase. The potential of this system was also demonstrated by the enhancement of mesenchymal stem cell proliferation. In conclusion, intact liposomes incorporated into nanofibers by coaxial electrospinning are very promising as a drug delivery system.
- MeSH
- křenová peroxidasa metabolismus MeSH
- lékové transportní systémy MeSH
- lidé MeSH
- liposomy chemie MeSH
- mezenchymální kmenové buňky cytologie metabolismus MeSH
- nanovlákna chemie MeSH
- nosiče léků chemie metabolismus MeSH
- povrchové vlastnosti MeSH
- proliferace buněk MeSH
- velikost částic MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This work is focused on preparation of novel porous type of core-shell-structured microparticles based on polylactide (shell) and poly(vinyl alcohol) cross-linked with glutaric acid (GA) (core) prepared by water-in-oil-in-water solvent evaporation technique. The microparticle systems were used as delivery systems for immobilisation of model antibacterial agent - nisin. The effect of cross-linking and the initial amount of nisin on their morphology was investigated using scanning electron microscopy, BET analysis, zeta potential measurement and Fourier transform infra-red spectroscopy. Encapsulation efficiency and release profile of nisin from the microparticles were studied by high performance liquid chromatography. Antibacterial activity of the prepared systems was tested by dilution and spread plate technique. Results showed the microparticles in the size range of 9-16 μm in diameter with spherical multi-hollow core-shell structure. The presence of cross-linking agent GA influences the release profile of the peptide and has synergistic effect on Listeria monocytogenes growth reduction.
- MeSH
- antibakteriální látky aplikace a dávkování MeSH
- glutaráty chemie MeSH
- Listeria monocytogenes účinky léků MeSH
- mikroskopie elektronová rastrovací MeSH
- nisin aplikace a dávkování MeSH
- nosiče léků chemie MeSH
- polyestery chemie MeSH
- polyvinylalkohol chemie MeSH
- poréznost MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
Recently, we confirmed that the well-established theory of gradient elution can be employed for prediction of retention in gradient elution from the isocratic data, method development and optimization in fast gradient chromatography employing short packed fully porous and monolithic columns and gradient times in between 1 and 2min, or even less. In the present work, we extended this study to short core-shell reversed-phase columns. We investigated the effects of the specification of the stationary phase in the core-shell structure on the prediction of gradient retention data. Two simple retention models describing the effects of the mobile phase on the retention by two-parameter equations yield comparable accuracy and can be used for prediction of elution times. The log-log model provides improved prediction of gradient bandwidths, especially for less retained compounds. A more sophisticated three-parameter model did not offer significant improvement of prediction. We compared the efficiency, selectivity and peak capacity of fast gradient separations of alkylbenzenes, phenolic acids and flavones on seven core shell columns with different lengths and chemistry of bonded shell stationary phase. Within the limits dictated by a fixed short separation time, appropriate adjustment of the range of the composition of mobile phase during gradient elution is the most efficient means to optimize the gradient separation. The gradient range affects sample bandwidths equally or even more significantly than the column length. Both 5-cm and 3-cm core-shell columns may provide comparable peak capacity in a fixed short gradient time.
Multifinishing treatment of cotton fabrics was carried out using core-shell nanoparticles that consists of silver nanoparticles (Ag(0)) as core and chitosan-O-methoxy polyethylene glycol (CTS-O-MPEG) as shell. The synthesized (Ag(0)-CTS-O-MPEG) core-shell nanoparticle was applied to cotton fabrics using the conventional pad-dry-cure method. The finished fabrics were examined for their morphological features and surface characteristics by making use of scanning electron microscope (SEM-EDX), which reveals the well dispersion of (Ag(0)-CTS-O-MPEG) core-shell nanoparticles on cotton fabrics. Factors affecting the treatment such as core shell nanoparticles, citric acid (CA) concentration as well as curing temperature were studied. The treated fabrics, at optimum condition of 1% core shell nanoparticles, 5% citric acid, drying at 80°C, curing at 160°C for 2 min, showed excellent antibacterial activity against Gram-negative Escherichia coli (E. coli) and Gram-positive bacteria Staphylococcus aureus (S. aureus), even after 20 washing cycles in addition to an enhancement in crease recovery angles (CRA) along with a slight improvement in tensile strength (TS).
Gas sensitive cerium oxide-tungsten oxide core-shell nanowires are synthesized and integrated directly into micromachined platforms via aerosol assisted chemical vapor deposition. Tests to various volatile organic compounds (acetone, ethanol, and toluene) involved in early disease diagnosis demonstrate enhanced sensitivity to acetone for the core-shell structures in contrast to the non-modified materials (i.e., only tungsten oxide or cerium oxide). This is attributed to the high density of oxygen vacancy defects at the shell, as well as the formation of heterojunctions at the core-shell interface, which provide the modified nanowires with 'extra' chemical and electronic sensitization as compared to the non-modified materials.
- MeSH
- aceton metabolismus MeSH
- cer chemie MeSH
- nanodráty chemie MeSH
- oxidy chemie MeSH
- těkavé organické sloučeniny metabolismus MeSH
- wolfram chemie MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The presence of an outer shell has been recently described as a common feature of acute ischemic stroke (AIS) thrombi. We performed a systematic review of the current literature on shell genesis, structure, and clinical significance. METHODS: Following PRISMA guidelines, we searched Ovid Cochrane Central Register of Controlled Trials, Embase, Medline, Scopus, and Web of Science for studies reporting the composition and structure of AIS thrombi and clot analogs. Identified studies were added to Covidence software for primary screening. Two reviewers independently screened titles and abstracts followed by full-text screening. RESULTS: From 1290 identified studies, 10 were included in this review. Studies using histology/immunohistochemistry/immunofluorescence described fibrin, platelets, von Willebrand factor, and neutrophil extracellular traps as the main components of the shell. Scanning electron microscopy demonstrated a dense, compact fibrin/platelet-rich shell, and a core rich in polyhedrocytes. Microfluidics studies identified highly activated P-selectin-positive platelets and fibrin forming the core while secondary agonists adenosine diphosphate and thromboxane, along with loosely packed P-selectin-negative platelets constituted the shell. CONCLUSIONS: The composition, compaction, and integrity of the shell may impact thrombolysis and revascularization outcomes. The preponderance of studies supported this conclusion.
- MeSH
- biologie MeSH
- cévní mozková příhoda * MeSH
- fibrin MeSH
- ischemická cévní mozková příhoda * MeSH
- lidé MeSH
- P-selektin MeSH
- trombóza * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- systematický přehled MeSH
Online electrokinetic preconcentration of magnetite core/carboxylic shell nanoparticles (MNPs) was studied by capillary electrophoresis using reversed and suppressed electroosmotic flow (EOF). 50mM sodium borate pH 9.5 was used as a background electrolyte. CTAB additive was used to reverse EOF and commercial polyvinylalcohol (PVA)-coated capillaries were used for EOF suppressed studies. Analyses in PVA-coated capillaries were more reproducible and therefore, the setup was further optimized in terms of water plug injection time, sample injection time, and voltage. Within the optimal conditions, the MNPs dispersed in water are electrokinetically loaded into BGE consisting of 50mM sodium borate pH 9.5 using -10kV for 120s. In comparison with the hydrodynamic injection of 5s by 50mbar, the electrokinetic injection allows 860-fold preconcentration of MNPs.
Targeted biocompatible nanostructures with controlled plasmonic and morphological parameters are promising materials for cancer treatment based on selective thermal ablation of cells. Here, core-shell plasmonic nanodiamonds consisting of a silica-encapsulated diamond nanocrystal coated in a gold shell are designed and synthesized. The architecture of particles is analyzed and confirmed in detail using electron tomography. The particles are biocompatibilized using a PEG polymer terminated with bioorthogonally reactive alkyne groups. Azide-modified transferrin is attached to these particles, and their high colloidal stability and successful targeting to cancer cells overexpressing the transferrin receptor are demonstrated. The particles are nontoxic to the cells and they are readily internalized upon binding to the transferrin receptor. The high plasmonic cross section of the particles in the near-infrared region is utilized to quantitatively ablate the cancer cells with a short, one-minute irradiation by a pulse 750-nm laser.
- MeSH
- ablace metody MeSH
- biokompatibilní materiály farmakokinetika MeSH
- cílená molekulární terapie metody MeSH
- HeLa buňky účinky léků MeSH
- indukovaná hypertermie metody MeSH
- karbocyaniny chemie MeSH
- laserová terapie metody MeSH
- lidé MeSH
- nanočástice chemie MeSH
- nanodiamanty chemie MeSH
- nanoslupky chemie MeSH
- polyethylenglykoly chemie MeSH
- receptory transferinu metabolismus MeSH
- transferin chemie farmakologie MeSH
- zlato chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
CdTe/ZnSe core/shell quantum dot (QD), one of the strongest and most highly luminescent nanoparticles, was directly synthesized in an aqueous medium to study its individual interactions with important nucleobases (adenine, guanine, cytosine, and thymine) in detail. The results obtained from the optical analyses indicated that the interactions of the QDs with different nucleobases were different, which reflected in different fluorescent emission maxima and intensities. The difference in the interaction was found due to the different chemical behavior and different sizes of the formed nanoconjugates. An electrochemical study also confirmed that the purines and pyrimidines show different interactions with the core/shell QDs. Based on these phenomena, a novel QD-based method is developed to detect the presence of the DNA, damage to DNA, and mutation. The QDs were successfully applied very easily to detect any change in the sequence (mutation) of DNA. The QDs also showed their ability to detect DNAs directly from the extracts of human cancer (PC3) and normal (PNT1A) cells (detection limit of 500 pM of DNA), which indicates the possibilities to use this easy assay technique to confirm the presence of living organisms in extreme environments.
- MeSH
- DNA analýza MeSH
- dynamický rozptyl světla MeSH
- elektrochemické techniky MeSH
- kvantové tečky chemie ultrastruktura MeSH
- lidé MeSH
- mutace genetika MeSH
- nádorové buněčné linie MeSH
- poškození DNA * MeSH
- sloučeniny kadmia chemie MeSH
- sloučeniny selenu chemie MeSH
- sloučeniny zinku chemie MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- statická elektřina MeSH
- telur chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH