forests
Dotaz
Zobrazit nápovědu
elektronický časopis
- Konspekt
- Veřejné zdraví a hygiena
- NLK Obory
- environmentální vědy
- biologie
- biomedicínské inženýrství
- NLK Publikační typ
- elektronické časopisy
The growth of past, present, and future forests was, is and will be affected by climate variability. This multifaceted relationship has been assessed in several regional studies, but spatially resolved, large-scale analyses are largely missing so far. Here we estimate recent changes in growth of 5800 beech trees (Fagus sylvatica L.) from 324 sites, representing the full geographic and climatic range of species. Future growth trends were predicted considering state-of-the-art climate scenarios. The validated models indicate growth declines across large region of the distribution in recent decades, and project severe future growth declines ranging from -20% to more than -50% by 2090, depending on the region and climate change scenario (i.e. CMIP6 SSP1-2.6 and SSP5-8.5). Forecasted forest productivity losses are most striking towards the southern distribution limit of Fagus sylvatica, in regions where persisting atmospheric high-pressure systems are expected to increase drought severity. The projected 21st century growth changes across Europe indicate serious ecological and economic consequences that require immediate forest adaptation.
- MeSH
- buk (rod) * MeSH
- klimatické změny MeSH
- lesy MeSH
- období sucha MeSH
- stromy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
When a tree dies, it continues to play an important ecological role within forests. Coarse woody debris (CWD), including standing deadwood (SDW) and downed deadwood (DDW), is an important functional component of forest ecosystems, particularly for many dispersal-limited saproxylic taxa and for metapopulation dynamics across landscapes. Processes, such as natural disturbance or management, modify forest composition and structure, thereby influencing CWD abundance and distribution. Many studies have compared older forests to forests managed with even-aged silvicultural systems and observed a prolonged period of low CWD occurrence after harvesting. With fine-scale spatial data, our study compares the long-term impacts of light partial harvesting on the CWD structure of eastern deciduous hardwood forests. We mapped and inventoried DDW and SDW using variable radius plots based on a 10 m × 10 m grid throughout an unmanaged, structurally-complex relict forest and two nearby forests that were partially harvested over 46 years ago. The relict stand had significantly larger individual pieces and higher accumulations of DDW and SDW than both of the partially harvested stands. Connectivity of CWD was much higher in the relict stand, which had fewer, larger patches. Larger pieces and higher proportion of decay-resistant species (e.g. Quercus spp.) in the relict forest resulted in slower decomposition, greater accumulation and increased connectivity of CWD. Partial harvests, such that occur with selection forestry, are generally considered less disruptive of ecosystem services, but this study highlights the long-term impacts of even light partial harvests on CWD stocks and distribution. When planning harvesting events, forest managers should also consider alternative methods to ensure the sustainability of deadwood resources and function.
- MeSH
- biodiverzita MeSH
- dřevo chemie metabolismus MeSH
- ekosystém MeSH
- lesy * MeSH
- stromy fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Determining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large-scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring-based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750-2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long-term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand's estimated time since last major disturbance, increased with mean diameter, and declined with increasing within-stand structural variability. Reconstructed spatial patterns suggest that high small-scale structural variability has historically acted to reduce large-scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region-wide increase in disturbance susceptibility. Increasingly common high-severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events).
- MeSH
- klimatické změny * MeSH
- lesy * MeSH
- období sucha MeSH
- smrk * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Evropa MeSH
Forests cover approximately one-third of Central Europe. Oak (Quercus) and European beech (Fagus sylvatica) are considered the natural dominants at low and middle elevations, respectively. Many coniferous forests (especially of Picea abies) occur primarily at midelevations, but these are thought to have resulted from forestry plantations planted over the past 200 years. Nature conservation and forestry policy seek to promote broadleaved trees over conifers. However, there are discrepancies between conservation guidelines (included in Natura 2000) and historical and palaeoecological data with regard to the distribution of conifers. Our aim was to bring new evidence to the debate on the conservation of conifers versus broadleaved trees at midelevations in Central Europe. We created a vegetation and land-cover model based on pollen data for a highland area of 11,300 km2in the Czech Republic and assessed tree species composition in the forests before the onset of modern forestry based on 18th-century archival sources. Conifers dominated the study region throughout the entire Holocene (approximately 40-60% of the area). Broadleaved trees were present in a much smaller area than envisaged by current ideas of natural vegetation. Rather than casting doubt on the principles of Central European nature conservation in general, our results highlight the necessity of detailed regional investigations and the importance of historical data in challenging established notions on the natural distribution of tree species.
- MeSH
- lesnictví MeSH
- lesy * MeSH
- stromy MeSH
- zachování přírodních zdrojů * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Habitat destruction and overhunting are two major drivers of mammal population declines and extinctions in tropical forests. The construction of roads can be a catalyst for these two threats. In Southeast Asia, the impacts of roads on mammals have not been well-documented at a regional scale. Before evidence-based conservation strategies can be developed to minimize the threat of roads to endangered mammals within this region, we first need to locate where and how roads are contributing to the conversion of their habitats and illegal hunting in each country. We interviewed 36 experts involved in mammal research from seven Southeast Asian countries to identify roads that are contributing the most, in their opinion, to habitat conversion and illegal hunting. Our experts highlighted 16 existing and eight planned roads - these potentially threaten 21% of the 117 endangered terrestrial mammals in those countries. Apart from gathering qualitative evidence from the literature to assess their claims, we demonstrate how species-distribution models, satellite imagery and animal-sign surveys can be used to provide quantitative evidence of roads causing impacts by (1) cutting through habitats where endangered mammals are likely to occur, (2) intensifying forest conversion, and (3) contributing to illegal hunting and wildlife trade. To our knowledge, ours is the first study to identify specific roads threatening endangered mammals in Southeast Asia. Further through highlighting the impacts of roads, we propose 10 measures to limit road impacts in the region.
- MeSH
- extinkce biologická MeSH
- lesy * MeSH
- motorová vozidla statistika a číselné údaje MeSH
- ohrožené druhy statistika a číselné údaje MeSH
- savci fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- jihovýchodní Asie MeSH
The structure of forests is an important stabilizing factor regarding ongoing global climate and land use change. Biodiverse mountain forests with natural structure are one of the ecosystems most endangered by these problems. We focused on the mountain forest islands of European beech (Fagus sylvatica) and their role in the natural distribution of organisms. The study area was situated in the oldest Czech national park, Krkonoše (385 km2), which is the highest mountain ridge in the country. We studied multi-taxa (lichens, beetles and hymenopterans) responses to three hierarchical spatial levels of the environment: the topography was described by the elevation gradient; the patch structure was described by canopy openness, dead wood amounts, and Norway spruce (Picea abies) cover; and the tree level was described by species of the sampled tree and its diameter. Lichens preferred higher elevations, while insect groups responded conversely. Furthermore, insect groups were mainly influenced by the inner patch structure of beech islands. Lichens may be jeopardized due to the predicted future increase in temperatures, since they would need to shift toward higher altitudes. Insects may be mainly threatened in the future by land use changes (i.e., forest management) - as indicated by an interconnection of canopy openness and the amount of dead wood.
- MeSH
- biodiverzita * MeSH
- brouci klasifikace MeSH
- Hymenoptera klasifikace MeSH
- lesy * MeSH
- lišejníky klasifikace MeSH
- prostorová analýza MeSH
- zachování přírodních zdrojů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
The white-sand ecosystems in the Solimões-Negro Interfluve are among the less studied in Amazonia. Recent herpetological surveys conducted west of Manaus, Brazil (central Amazonia) indicate that white-sand forests host a unique anuran fauna comprising habitat specialized and endemic species. In the present study we describe a new species of rain frog belonging to the Pristimantis unistrigatus species group from the white-sand forest locally called "campinarana" (thin-trunked forests with canopy height below 20 m). The new species is phylogenetically close to rain frogs from western Amazonian lowlands (P. delius, P. librarius, P. matidiktyo and P. ockendeni). It differs from its closest relatives mainly by its size (male SVL of 17.3-20.1 mm, n = 16; female SVL of 23.2-26.5 mm, n = 6), presence of tympanum, tarsal tubercles and dentigerous processes of vomers, its translucent groin without bright colored blotches or marks, and by its advertisement call (composed of 5-10 notes, call duration of 550-1,061 ms, dominant frequency of 3,295-3,919 Hz). Like other anuran species recently discovered in the white-sand forests west of Manaus, the new species seems to be restricted to this peculiar ecosystem.
- MeSH
- ekosystém * MeSH
- lesy MeSH
- písek MeSH
- žáby * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Brazílie MeSH
Lecanosticta acicola causes brown spot needle blight (BSNB) of Pinus species. The pathogen occurs mostly in the Northern Hemisphere but has also been reported in Central America and Colombia. BSNB can lead to stunted growth and tree mortality, and has resulted in severe damage to pine plantations in the past. There have been increasingly frequent new reports of this pathogen in Europe and in North America during the course of the past 10 years. This is despite the fact that quarantine practices and eradication protocols are in place to prevent its spread. TAXONOMY: Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Dothideomycetes; Subclass Dothideomycetidae; Order Capniodales; Family Mycosphaerellaceae; Genus Lecanosticta. HOST RANGE AND DISTRIBUTION: Lecanosticta spp. occur on various Pinus species and are found in North America, Central America, South America (Colombia), Europe as well as Asia. DISEASE SYMPTOMS: Small yellow irregular spots appear on the infected pine needles that become brown over time. They can be surrounded by a yellow halo. These characteristic brown spots develop to form narrow brown bands that result in needle death from the tips down to the point of infection. Needles are prematurely shed, leaving bare branches with tufts of new needles at the branch tips. Infection is usually most severe in the lower parts of the trees and progresses upwards into the canopies. USEFUL WEBSITES: The EPPO global database providing information on L. acicola (https://gd.eppo.int/taxon/SCIRAC) Reference genome of L. acicola available on GenBank (https://www.ncbi.nlm.nih.gov/genome/?term=Lecanosticta+acicola) JGI Gold Genome database information sheet of L. acicola sequenced genome (https://gold.jgi.doe.gov/organism?xml:id=Go0047147).