learning algorithms
Dotaz
Zobrazit nápovědu
This paper describes the interactive tools of the AKUTNE.CZ (part of MEFANET) and SEPSIS-Q portals for Problem Based Learning (PBL) sessions in medical education. The portals aim to be a comprehensive source of information and educational materials, covering all aspects of acute medicine for undergraduate medical students and health professionals. Our focus is mainly on simulation-based tools for teaching and learning algorithms in acute patient care, the backbone of the AKUTNE.CZ and SEPSIS-Q portals. Over the last five years, more than 30 interactive algorithms in the Czech and English languages (http:// www.akutne.eu) have been devel¨oped and published online, allowing users to test and improve their knowledge and skills in the field of acute medicine. Additionally, we have created six SEPSIS-Q interactive scenarios in the Czech version. The peerreviewed algorithms were used for conducting PBL-like sessions in General Medicine (First Aid, Anaesthesiology and Pain Management, Emergency Medicine) and in Nursing (Obstetric Analgesia and Anaesthesia for Midwives, Intensive Care Medicine). The interactive scenarios serve to demonstrate interesting cases, with preference for Intensive Care Medicine sessions in General Medicine and Nursing.
- MeSH
- algoritmy MeSH
- lidé MeSH
- počítačem řízená výuka metody MeSH
- problémově orientovaná výuka * metody trendy MeSH
- sepse * diagnóza terapie MeSH
- studium lékařství pregraduální metody MeSH
- studium ošetřovatelství bakalářské metody MeSH
- urgentní lékařství metody přístrojové vybavení výchova MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
BACKGROUND: Medical Faculties Network (MEFANET) has established itself as the authority for setting standards for medical educators in the Czech Republic and Slovakia, 2 independent countries with similar languages that once comprised a federation and that still retain the same curricular structure for medical education. One of the basic goals of the network is to advance medical teaching and learning with the use of modern information and communication technologies. OBJECTIVE: We present the education portal AKUTNE.CZ as an important part of the MEFANET's content. Our focus is primarily on simulation-based tools for teaching and learning acute medicine issues. METHODS: Three fundamental elements of the MEFANET e-publishing system are described: (1) medical disciplines linker, (2) authentication/authorization framework, and (3) multidimensional quality assessment. A new set of tools for technology-enhanced learning have been introduced recently: Sandbox (works in progress), WikiLectures (collaborative content authoring), Moodle-MEFANET (central learning management system), and Serious Games (virtual casuistics and interactive algorithms). The latest development in MEFANET is designed for indexing metadata about simulation-based learning objects, also known as electronic virtual patients or virtual clinical cases. The simulations assume the form of interactive algorithms for teaching and learning acute medicine. An anonymous questionnaire of 10 items was used to explore students' attitudes and interests in using the interactive algorithms as part of their medical or health care studies. Data collection was conducted over 10 days in February 2013. RESULTS: In total, 25 interactive algorithms in the Czech and English languages have been developed and published on the AKUTNE.CZ education portal to allow the users to test and improve their knowledge and skills in the field of acute medicine. In the feedback survey, 62 participants completed the online questionnaire (13.5%) from the total 460 addressed. Positive attitudes toward the interactive algorithms outnumbered negative trends. CONCLUSIONS: The peer-reviewed algorithms were used for conducting problem-based learning sessions in general medicine (first aid, anesthesiology and pain management, emergency medicine) and in nursing (emergency medicine for midwives, obstetric analgesia, and anesthesia for midwifes). The feedback from the survey suggests that the students found the interactive algorithms as effective learning tools, facilitating enhanced knowledge in the field of acute medicine. The interactive algorithms, as a software platform, are open to academic use worldwide. The existing algorithms, in the form of simulation-based learning objects, can be incorporated into any educational website (subject to the approval of the authors).
... Contents -- Preface xv -- 1 Introduction 1 -- 2 Algorithms and Complexity 7 -- 2.1 What Is an Algorithm ... ... 7 -- 2.2 Biological Algorithms versus Computer Algorithms 14 -- 2.3 The Change Problem 17 -- 2.4 Correct ... ... versus Incorrect Algorithms 20 -- 2.5 Recursive Algorithms 24 -- 2.6 Iterative versus Recursive Algorithms ... ... 28 -- 2.7 Fast versus Slow Algorithms 33 -- 2.8 Big-O Notation 37 -- 2.9 Algorithm Design Techniques ... ... 43 -- 2.9.4 Dynamic Programming 43 -- 2.9.5 Divide-and-Conquer Algorithms 48 -- 2.9.6 Machine Learning ...
Computational molecular biology series
[1st ed.] xviii, 435 s. : il.
- MeSH
- algoritmy MeSH
- informatika MeSH
- Konspekt
- Lékařské vědy. Lékařství
- NLK Obory
- lékařská informatika
During the lockdown of universities and the COVID-Pandemic most students were restricted to their homes. Novel and instigating teaching methods were required to improve the learning experience and so recent implementations of the annual PhysioNet/Computing in Cardiology (CinC) Challenges posed as a reference. For over 20 years, the challenges have proven repeatedly to be of immense educational value, besides leading to technological advances for specific problems. In this paper, we report results from the class 'Artificial Intelligence in Medicine Challenge', which was implemented as an online project seminar at Technical University Darmstadt, Germany, and which was heavily inspired by the PhysioNet/CinC Challenge 2017 'AF Classification from a Short Single Lead ECG Recording'. Atrial fibrillation is a common cardiac disease and often remains undetected. Therefore, we selected the two most promising models of the course and give an insight into the Transformer-based DualNet architecture as well as into the CNN-LSTM-based model and finally a detailed analysis for both. In particular, we show the model performance results of our internal scoring process for all submitted models and the near state-of-the-art model performance for the two named models on the official 2017 challenge test set. Several teams were able to achieve F1scores above/close to 90% on a hidden test-set of Holter recordings. We highlight themes commonly observed among participants, and report the results from the self-assessed student evaluation. Finally, the self-assessment of the students reported a notable increase in machine learning knowledge.
- MeSH
- algoritmy MeSH
- COVID-19 * diagnóza MeSH
- elektrokardiografie metody MeSH
- fibrilace síní * diagnóza MeSH
- kontrola infekčních nemocí MeSH
- lidé MeSH
- strojové učení MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The surface organic horizons in forest soils have been affected by air and soil pollutants, including potentially toxic elements (PTEs). Monitoring of PTEs requires a large number of samples and adequate analysis. Visible-near infrared (vis-NIR: 350-2500 nm) spectroscopy provides an alternative method to conventional laboratory measurements, which are time-consuming and expensive. However, vis-NIR spectroscopy relies on an empirical calibration of the target attribute to the spectra. This study examined the capability of vis-NIR spectra coupled with machine learning (ML) techniques (partial least squares regression (PLSR), support vector machine regression (SVMR), and random forest (RF)) and a deep learning (DL) approach called fully connected neural network (FNN) to assess selected PTEs (Cr, Cu, Pb, Zn, and Al) in forest organic horizons. The dataset consists of 2160 samples from 1080 sites in the forests over all the Czech Republic. At each site, we collected two samples from the fragmented (F) and humus (H) organic layers. The content of all PTEs was higher in horizon H compared to F horizon. Our results indicate that the reflectance of samples tended to decrease with increased PTEs concentration. Cr was the most accurately predicted element, regardless of the algorithm used. SVMR provided the best results for assessing the H horizon (R2 = 0.88 and RMSE = 3.01 mg/kg for Cr). FNN produced the best predictions of Cr in the combined F + H layers (R2 = 0.89 and RMSE = 2.95 mg/kg) possibly due to the larger number of samples. In the F horizon, the PTEs were not predicted adequately. The study shows that PTEs in forest soils of the Czech Republic can be accurately estimated with vis-NIR spectra and ML approaches. Results hint in availability of a large sample size, FNN provides better results.
- MeSH
- algoritmy MeSH
- látky znečišťující půdu * MeSH
- neuronové sítě MeSH
- půda * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Electroencephalography (EEG) has emerged as a primary non-invasive and mobile modality for understanding the complex workings of the human brain, providing invaluable insights into cognitive processes, neurological disorders, and brain-computer interfaces. Nevertheless, the volume of EEG data, the presence of artifacts, the selection of optimal channels, and the need for feature extraction from EEG data present considerable challenges in achieving meaningful and distinguishing outcomes for machine learning algorithms utilized to process EEG data. Consequently, the demand for sophisticated optimization techniques has become imperative to overcome these hurdles effectively. Evolutionary algorithms (EAs) and other nature-inspired metaheuristics have been applied as powerful design and optimization tools in recent years, showcasing their significance in addressing various design and optimization problems relevant to brain EEG-based applications. This paper presents a comprehensive survey highlighting the importance of EAs and other metaheuristics in EEG-based applications. The survey is organized according to the main areas where EAs have been applied, namely artifact mitigation, channel selection, feature extraction, feature selection, and signal classification. Finally, the current challenges and future aspects of EAs in the context of EEG-based applications are discussed.
- MeSH
- algoritmy * MeSH
- artefakty MeSH
- elektroencefalografie * metody MeSH
- lidé MeSH
- mozek * fyziologie MeSH
- rozhraní mozek-počítač MeSH
- strojové učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The scarcity of high-quality annotations in many application scenarios has recently led to an increasing interest in devising learning techniques that combine unlabeled data with labeled data in a network. In this work, we focus on the label propagation problem in multilayer networks. Our approach is inspired by the heat diffusion model, which shows usefulness in machine learning problems such as classification and dimensionality reduction. We propose a novel boundary-based heat diffusion algorithm that guarantees a closed-form solution with an efficient implementation. We experimentally validated our method on synthetic networks and five real-world multilayer network datasets representing scientific coauthorship, spreading drug adoption among physicians, two bibliographic networks, and a movie network. The results demonstrate the benefits of the proposed algorithm, where our boundary-based heat diffusion dominates the performance of the state-of-the-art methods.
- MeSH
- algoritmy MeSH
- řízené strojové učení * MeSH
- strojové učení MeSH
- vysoká teplota * MeSH
- Publikační typ
- časopisecké články MeSH
Telemedicine is an emerging development in the healthcare domain, where the Internet of Things (IoT) fiber optics technology assists telemedicine applications to improve overall digital healthcare performances for society. Telemedicine applications are bowel disease monitoring based on fiber optics laser endoscopy, gastrointestinal disease fiber optics lights, remote doctor-patient communication, and remote surgeries. However, many existing systems are not effective and their approaches based on deep reinforcement learning have not obtained optimal results. This paper presents the fiber optics IoT healthcare system based on deep reinforcement learning combinatorial constraint scheduling for hybrid telemedicine applications. In the proposed system, we propose the adaptive security deep q-learning network (ASDQN) algorithm methodology to execute all telemedicine applications under their given quality of services (deadline, latency, security, and resources) constraints. For the problem solution, we have exploited different fiber optics endoscopy datasets with images, video, and numeric data for telemedicine applications. The objective is to minimize the overall latency of telemedicine applications (e.g., local, communication, and edge nodes) and maximize the overall rewards during offloading and scheduling on different nodes. The simulation results show that ASDQN outperforms all telemedicine applications with their QoS and objectives compared to existing state action reward state (SARSA) and deep q-learning network (DQN) policy during execution and scheduling on different nodes.
- MeSH
- algoritmy MeSH
- deep learning * MeSH
- internet věcí * MeSH
- lidé MeSH
- technologie optických vláken MeSH
- telemedicína * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH