pasteurization
Dotaz
Zobrazit nápovědu
Our aim was to assess the effect of pasteurization temperature on inactivation of staphylococcal enterotoxins (SE). Milk samples were inoculated with log 4.38 to 5.18cfu/mL of 40 different Staphylococcus aureus strains having the ability to produce types A, B, or C SE and incubated at 37°C for 24h to develop SE. This incubation was followed by heat treatment for 15 s at 72, 85, and 92°C. Samples were analyzed for Staph. aureus count by plate method and, specifically, for SE presence. An enzyme-linked immunofluorescent assay on a MiniVIDAS analyzer (bioMérieux, Marcy l'Étoile, France) was used to detect SE, which were determined semiquantitatively based on test values. The Staph. aureus count in milk before pasteurization did not affect the amount of SE. Before pasteurization, SEB was detected in the lowest amount compared with other SE types. Staphylococcal enterotoxins were markedly reduced with pasteurization and inactivated at pasteurization temperatures to an extent depending on the amount in the sample before pasteurization. After pasteurization at 72°C, SE were detected in 87.5% of samples (35/40), after pasteurization at 85°C in 52.5% of samples (21/40), and after pasteurization at 92°C in 45.0% of samples (18/40). We determined that SE may still persist in milk even when Staph. aureus bacteria are inactivated through pasteurization. Although pasteurization may partially inactivate SE in milk, a key measure in the prevention of staphylococcal enterotoxicosis linked to pasteurized milk consumption is to avoid any cold chain disruption during milk production and processing.
- MeSH
- analýza potravin MeSH
- enterotoxiny analýza MeSH
- kontaminace potravin prevence a kontrola MeSH
- mléko chemie MeSH
- pasterizace * MeSH
- potravinářská mikrobiologie MeSH
- Staphylococcus aureus růst a vývoj izolace a purifikace MeSH
- vysoká teplota MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
This study describes the prevalence of Encephalitozoon cuniculi in raw cow's milk and evaluates the effect of different milk pasteurization treatments on E. cuniculi infectivity for severe combined immunodeficient (SCID) mice. Using a nested polymerase chain reaction approach, 1 of 50 milking cows was found to repeatedly shed E. cuniculi in its feces and milk. Under experimental conditions, E. cuniculi spores in milk remained infective for SCID mice following pasteurization treatments at 72 °C for 15 s or 85 °C for 5 s. Based on these findings, pasteurized cow's milk should be considered a potential source of E. cuniculi infection in humans.
- MeSH
- Encephalitozoon cuniculi izolace a purifikace patogenita MeSH
- feces parazitologie MeSH
- mléko parazitologie MeSH
- myši SCID MeSH
- myši MeSH
- pasterizace metody MeSH
- polymerázová řetězová reakce MeSH
- skot MeSH
- spory hub izolace a purifikace patogenita MeSH
- vysoká teplota MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- chloroform MeSH
- elektroforéza MeSH
- hemoglobiny izolace a purifikace MeSH
- lidé MeSH
- náhražky plazmy izolace a purifikace MeSH
- vysoká teplota MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- srovnávací studie MeSH
INTRODUCTION: Impact of processing on product characteristics, sustainability, traceability, authenticity, and public health along the food chain becomes more and more important not only to the producer but also to the customer and the trust of a consumer toward a brand. In recent years, the number of juices and smoothies containing so called super foods or fruits, which have been "gently pasteurized," has increased significantly. However, the term "gentle pasteurization" related to the application of emerging preservation technologies such as pulsed electric fields (PEF), high pressure processing (HPP) or ohmic heating (OH) is not clearly defined. METHODS: Therefore, the presented study investigated the influence of PEF, HPP, OH, and thermal treatment on quality characteristics and microbial safety of sea buckthorn syrup. Syrups from two different varieties were investigated under the following conditions HPP (600 MPa 4-8 min), OH (83°C and 90°C), PEF (29.5 kV/cm, 6 μs, 100 Hz), and thermal (88°C, hot filling). Analyses to test the influence on quality parameters like ascorbic acid (AA), flavonoids, carotenoids, tocopherols, antioxidant activity; metabolomical/chemical profiling (fingerprinting) via U-HPLC-HRMS/MS (here especially flavonoids and fatty acids); sensory evaluation, as well as microbial stability including storage, were conducted. RESULTS AND DISCUSSION: Independent from the treatment, the samples were stable over 8 weeks of storage at 4°C. The influence on the nutrient content [Ascorbic acid (AA), total antioxidant activity (TAA), total phenolic compounds (TPC), tocopherols (Vit E)] was similar for all tested technologies. Employing statistical evaluation Principal Component Analysis (PCA) a clear clustering based on the processing technologies was observed. Flavonoids as well as fatty acids were significantly impacted by the type of used preservation technology. This was obvious during the storage time of PEF and HPP syrups, where enzyme activity was still active. The color as well as taste of the syrups were found to be more fresh-like for the HPP treated samples.
- Publikační typ
- časopisecké články MeSH