Although specific risk factors for brain alterations in bipolar disorders (BD) are currently unknown, obesity impacts the brain and is highly prevalent in BD. Gray matter correlates of obesity in BD have been well documented, but we know much less about brain white matter abnormalities in people who have both obesity and BD. We obtained body mass index (BMI) and diffusion tensor imaging derived fractional anisotropy (FA) from 22 white matter tracts in 899 individuals with BD, and 1287 control individuals from 20 cohorts in the ENIGMA-BD working group. In a mega-analysis, we investigated the associations between BMI, diagnosis or medication and FA. Lower FA was associated with both BD and BMI in six white matter tracts, including the corpus callosum and thalamic radiation. Higher BMI or BD were uniquely associated with lower FA in three and six white matter tracts, respectively. People not receiving lithium treatment had a greater negative association between FA and BMI than people treated with lithium in the posterior thalamic radiation and sagittal stratum. In three tracts BMI accounted for 10.5 to 17% of the negative association between the number of medication classes other than lithium and FA. Both overweight/obesity and BD demonstrated lower FA in some of the same regions. People prescribed lithium had a weaker association between BMI and FA than people not on lithium. In contrast, greater weight contributed to the negative associations between medications and FA. Obesity may add to brain alterations in BD and may play a role in effects of medications on the brain.
- MeSH
- Anisotropy MeSH
- White Matter * pathology diagnostic imaging metabolism MeSH
- Bipolar Disorder * pathology metabolism MeSH
- Adult MeSH
- Body Mass Index MeSH
- Middle Aged MeSH
- Humans MeSH
- Brain pathology MeSH
- Obesity * pathology metabolism complications MeSH
- Gray Matter MeSH
- Diffusion Tensor Imaging methods MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
PURPOSE: Docetaxel resistance is a significant obstacle in the treatment of prostate cancer (PCa), resulting in unfavorable patient prognoses. Intratumoral heterogeneity, often associated with epithelial-to-mesenchymal transition (EMT), has previously emerged as a phenomenon that facilitates adaptation to various stimuli, thus promoting cancer cell diversity and eventually resistance to chemotherapy, including docetaxel. Hence, understanding intratumoral heterogeneity is essential for better patient prognosis and the development of personalized treatment strategies. METHODS: To address this, we employed a high-throughput single-cell flow cytometry approach to identify a specific surface fingerprint associated with docetaxel-resistance in PCa cells and complemented it with proteomic analysis of extracellular vesicles. We further validated selected antigens using docetaxel-resistant patient-derived xenografts in vivo and probed primary PCa specimens to interrogate of their surface fingerprint. RESULTS: Our approaches revealed a 6-molecule surface fingerprint linked to docetaxel resistance in primary PCa specimens. We observed consistent overexpression of CD95 (FAS/APO-1), and SSEA-4 surface antigens in both in vitro and in vivo docetaxel-resistant models, which was also observed in a cell subpopulation of primary PCa tumors exhibiting EMT features. Furthermore, CD95, along with the essential enzymes involved in SSEA-4 synthesis, ST3GAL1, and ST3GAL2, displayed a significant increase in patients with PCa undergoing docetaxel-based therapy, correlating with poor survival outcomes. CONCLUSION: In summary, we demonstrate that the identified 6-molecule surface fingerprint associated with docetaxel resistance pre-exists in a subpopulation of primary PCa tumors before docetaxel treatment. Thus, this fingerprint warrants further validation as a promising predictive tool for docetaxel resistance in PCa patients prior to therapy initiation.
- MeSH
- Drug Resistance, Neoplasm * MeSH
- Docetaxel * pharmacology therapeutic use MeSH
- Epithelial-Mesenchymal Transition drug effects MeSH
- Humans MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Prostatic Neoplasms * pathology drug therapy metabolism MeSH
- Antineoplastic Agents pharmacology therapeutic use MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Proximal Femoral Focal Deficiency (PFFD) is the most proximal manifestation of a syndrome involving Congenitally Shortened lower Limbs (CSL), which also affects the fibula and midline metatarsals. This pattern of congenital human long bone deficiencies corresponds, in a time dependent manner, to the failed ingrowth pathways of new blood vessels of the growing embryonic limb. The distal femoral condyles are, in contrast, served by an alternative vascular supply from around the knee joint, and so remain resistant to the CSL deficiency. AIM: We hypothesize that embryonic vascular dysgenesis causes PFFD, as well as the cardinal features of the Femoral, Fibular and midline Metatarsal deficiencies (FFM) syndrome. RESULTS: Arteriography of CSL with PFFD reveals diminution or failed formation of the Femoral Artery (FA), which corresponds to downstream skeletal reductions. It may also reveal preservation of the primitive Axial Artery (AA) of the embryonic limb. The combination of missing and retained primitive vessels inform the time, place, and nature of the etiologic vascular events. This suggests that PFFD is the visible expression of a normally prefigured cartilaginous scaffold of the femur, which develops in conformity with the available pattern of blood vessels present. The teratogen thalidomide, known to affect the forming embryonic vasculature, also produces PFFD indistinguishable from the naturally occurring entity. CONCLUSION: The entire spectrum of PFFD, including phocomelia, fibular, and metatarsal dystrophisms, should thus be regarded as downstream skeletal results of embryonic arterial dysgeneses.
- MeSH
- Femoral Artery * abnormalities embryology MeSH
- Femur * abnormalities blood supply embryology MeSH
- Fibula abnormalities blood supply MeSH
- Humans MeSH
- Metatarsal Bones abnormalities MeSH
- Lower Extremity Deformities, Congenital * embryology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Protein misfolding diseases, including α1-antitrypsin deficiency (AATD), pose substantial health challenges, with their cellular progression still poorly understood1-3. We use spatial proteomics by mass spectrometry and machine learning to map AATD in human liver tissue. Combining Deep Visual Proteomics (DVP) with single-cell analysis4,5, we probe intact patient biopsies to resolve molecular events during hepatocyte stress in pseudotime across fibrosis stages. We achieve proteome depth of up to 4,300 proteins from one-third of a single cell in formalin-fixed, paraffin-embedded tissue. This dataset reveals a potentially clinically actionable peroxisomal upregulation that precedes the canonical unfolded protein response. Our single-cell proteomics data show α1-antitrypsin accumulation is largely cell-intrinsic, with minimal stress propagation between hepatocytes. We integrated proteomic data with artificial intelligence-guided image-based phenotyping across several disease stages, revealing a late-stage hepatocyte phenotype characterized by globular protein aggregates and distinct proteomic signatures, notably including elevated TNFSF10 (also known as TRAIL) amounts. This phenotype may represent a critical disease progression stage. Our study offers new insights into AATD pathogenesis and introduces a powerful methodology for high-resolution, in situ proteomic analysis of complex tissues. This approach holds potential to unravel molecular mechanisms in various protein misfolding disorders, setting a new standard for understanding disease progression at the single-cell level in human tissue.
- MeSH
- alpha 1-Antitrypsin metabolism MeSH
- Single-Cell Analysis MeSH
- alpha 1-Antitrypsin Deficiency * pathology metabolism genetics MeSH
- Phenotype MeSH
- Hepatocytes metabolism pathology MeSH
- Liver Cirrhosis pathology metabolism MeSH
- Liver pathology metabolism MeSH
- Humans MeSH
- Disease Progression MeSH
- Proteome * analysis metabolism MeSH
- Proteomics * methods MeSH
- Unfolded Protein Response MeSH
- Machine Learning MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Multidimensional chromatography coupled to tandem mass spectrometry (MS/MS), including simple sample preparation with protein precipitation, anion conversion with ammonium hydroxide, and solid-phase extraction using mixed-mode anion exchange in a 96-well plate format, has been validated for rapid simultaneous analysis of human insulin and its six analogs (lispro, glulisine, glargine, degludec, detemir, and aspart) in human plasma. This method is critical for clinical diagnostics, forensic investigations, and anti-doping efforts due to the widespread use of these substances. In the present study, improved chromatographic resolution was achieved using a first-dimension trap-and-elute configuration with an XBridge C18 (2.1 × 20 mm, 3.5 μm) trap column combined with second dimension separation on a Cortecs Ultra-High-Performance Liquid Chromatography (UHPLC) C18+ (2.1 × 100 mm, 1.6 μm) analytical column implemented within a two-dimensional-LC-MS/MS system. The total chromatographic run time was 11 min. This setup increases both the resolution and sensitivity of the method. A mobile phase consisting of 0.8% formic acid (FA) in water and 0.7% FA in acetonitrile was used for gradient elution. Bovine insulin was used as the internal standard. MS detection was performed in positive electrospray ionization mode, and the ion suppression due to matrix effects was evaluated. Validation criteria included linearity, precision, accuracy, recovery, lower limit of quantitation, matrix effect, and stability tests with and without protease inhibitor cocktail under different conditions (short-term stability, long-term stability, and freeze-thaw stability). The concentration range for all insulins was 50-15 000 pg/mL, with limits of quantification below the therapeutic reference range for all analytes. Intra-run precision ranged from 1.1% to 5.7%, inter-run precision from 0.7% to 5.9%, and overall recovery from 96.9% to 114.3%. The validated method has been implemented successfully by the Department of Forensic Medicine at our hospital for the investigation of unexplained deaths.
BACKGROUND AND PURPOSE: The primary objective was to compare diffusion tensor imaging (DTI) scalar parameters of peripheral nerves between subjects with type 2 diabetes mellitus (T2DM) and those without diabetes. Secondarily, we aimed to correlate DTI scalar parameters with nerve morphometric properties. METHODS: Median, tibial, and sural nerves were harvested from 34 male cadavers (17 T2DM, 17 nondiabetic). Each nerve was divided into three segments. The initial segment was scanned using 9.4 Tesla MRI system (three-dimensional pulsed-gradient spin-echo sequence). DTI scalars were calculated from region-average diffusion-weighted signals. Second segment was optically cleared, acquired with optical projection tomography (OPT), and analyzed for morphometrical properties. Toluidine-stained sections were prepared from last segment, and axon- and myelin-related properties were evaluated. RESULTS: DTI scalar parameters of median and tibial nerves were comparable between the groups, while sural nerves of T2DM exhibited on average 41% higher mean diffusivity (MD) (p = 0.03), 38% higher radial diffusivity (RD) (p = 0.03), and 27% lower fractional anisotropy (FA) (p = 0.005). Significant differences in toluidine-evaluated parameters of sural nerves were observed between the groups, with a positive correlation between FA with fiber density (p = 0.0001) and with myelin proportion (p < 0.0001) and an inverse correlation between RD and myelin proportion (p = 0.003). OPT-measured morphometric properties did not correlate with DTI scalar parameters. CONCLUSIONS: High-field DTI shows promise as an imaging technique for detecting axonal and myelin-related changes in small sural nerves ex vivo. The reduced fiber density and decreased myelin content, which can be observed in T2DM, likely contribute to observed FA reduction and increased MD/RD.
- MeSH
- Diabetes Mellitus, Type 2 * diagnostic imaging pathology MeSH
- Diabetic Neuropathies diagnostic imaging pathology MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Cadaver * MeSH
- Median Nerve diagnostic imaging pathology MeSH
- Sural Nerve * diagnostic imaging pathology MeSH
- Tibial Nerve diagnostic imaging pathology MeSH
- Reproducibility of Results MeSH
- Aged MeSH
- Sensitivity and Specificity MeSH
- Diffusion Tensor Imaging * methods MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
Klebsiella pneumoniae, a Gram-negative bacterium, comprises strains with diverse virulence potentials, ranging from classical to hypervirulent variants. Understanding the genetic basis underlying the virulence disparities between hypervirulent (hvKp) and classical K. pneumoniae (cKp) strains is crucial. hvKp strains are characterized by hypermucoviscosity, attributed to the presence of specific virulence genes and the production of molecules that aid in their ability to survive, evade host immune defenses, and cause infection. In contrast, classical strains exhibit a broader array of antimicrobial resistance determinants, conferring resistance to multiple antibiotics. Although current definitions of hvKp incorporate clinical features, phenotypes, and genotypes, identifying hvKp strains in clinical settings remains challenging. Genomic studies have been pivotal and have helped to identify distinct genetic profiles in hvKp strains, including unique virulence plasmids and chromosomal variations, underscoring the genetic diversity within K. pneumoniae populations. This review examines the virulence and genetic determinants associated with hvKp. The presence of genes defining hypervirulence, alongside considerations of their utility as biomarkers and targets for therapeutic strategies, is discussed, while also providing insight into biofilm formation by hvKp and key questions that need urgent responses in understanding hvKp.
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Biofilms growth & development MeSH
- Virulence Factors * genetics MeSH
- Klebsiella Infections * microbiology MeSH
- Klebsiella pneumoniae * pathogenicity genetics drug effects MeSH
- Humans MeSH
- Virulence genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
OBJECTIVE: The clinical diversity of schizophrenia is reflected by structural brain variability. It remains unclear how this variability manifests across different gray and white matter features. In this meta- and mega-analysis, the authors investigated how brain heterogeneity in schizophrenia is distributed across multimodal structural indicators. METHODS: The authors used the ENIGMA dataset of MRI-based brain measures from 22 international sites with up to 6,037 individuals for a given brain measure. Variability and mean values of cortical thickness, cortical surface area, cortical folding index, subcortical volume, and fractional anisotropy were examined in individuals with schizophrenia and healthy control subjects. RESULTS: Individuals with schizophrenia showed greater variability in cortical thickness, cortical surface area, subcortical volume, and fractional anisotropy within the frontotemporal and subcortical network. This increased structural variability was mainly associated with psychopathological symptom domains, and the schizophrenia group frequently displayed lower mean values in the respective structural measures. Unexpectedly, folding patterns were more uniform in individuals with schizophrenia, particularly in the right caudal anterior cingulate region. The mean folding values of the right caudal anterior cingulate region did not differ between the schizophrenia and healthy control groups, and folding patterns in this region were not associated with disease-related parameters. CONCLUSIONS: In patients with schizophrenia, uniform folding patterns in the right caudal anterior cingulate region contrasted with the multimodal variability in the frontotemporal and subcortical network. While variability in the frontotemporal and subcortical network was associated with disease-related diversity, uniform folding may indicate a less flexible interplay between genetic and environmental factors during neurodevelopment.
- MeSH
- Anisotropy MeSH
- White Matter pathology diagnostic imaging MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Brain * pathology diagnostic imaging MeSH
- Schizophrenia * pathology diagnostic imaging MeSH
- Gray Matter pathology diagnostic imaging MeSH
- Diffusion Tensor Imaging MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
Extracellular matrix (ECM) is a network of macromolecules which has two forms-perineuronal nets (PNNs) and a diffuse ECM (dECM)-both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility. Two months after oral treatment of rats with 4-methylumbelliferone (4-MU), an inhibitor of hyaluronan (HA) synthesis, we found downregulated staining for PNNs, HA, chondroitin sulfate proteoglycans, and glial fibrillary acidic protein. These changes were enhanced after 4 and 6 months and were reversible after a normal diet. Morphometric analysis further indicated atrophy of astrocytes. Using real-time iontophoretic method dysregulation of ECM resulted in increased ECS volume fraction α in the somatosensory cortex by 35%, from α = 0.20 in control rats to α = 0.27 after the 4-MU diet. Diffusion-weighted magnetic resonance imaging revealed a decrease of mean diffusivity and fractional anisotropy (FA) in the cortex, hippocampus, thalamus, pallidum, and spinal cord. This study shows the increase in ECS volume, a loss of FA, and changes in astrocytes due to modulation of PNNs and dECM that could affect extrasynaptic transmission, cell-to-cell communication, and neural plasticity.
- MeSH
- Astrocytes metabolism MeSH
- Chondroitin Sulfate Proteoglycans metabolism MeSH
- Extracellular Matrix * metabolism MeSH
- Extracellular Space * metabolism MeSH
- Glial Fibrillary Acidic Protein metabolism MeSH
- Hymecromone pharmacology MeSH
- Rats MeSH
- Hyaluronic Acid MeSH
- Brain metabolism MeSH
- Nerve Net drug effects diagnostic imaging MeSH
- Rats, Sprague-Dawley MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The current understanding of lipid droplets (LDs) in cell biology has evolved from being viewed merely as storage compartments. LDs are now recognized as metabolic hubs that act as cytosolic buffers against the detrimental effects of free fatty acids (FAs). Upon activation, FAs traverse various cellular pathways, including oxidation in mitochondria, integration into complex lipids, or storage in triacylglycerols (TGs). Maintaining a balance among these processes is crucial in cellular FA trafficking, and under metabolically challenging circumstances the routes of FA metabolism adapt to meet the current cellular needs. This typically involves an increased demand for anabolic intermediates or energy and the prevention of redox stress. Surprisingly, LDs accumulate under certain conditions such as amino acid starvation. This review explores the biochemical aspects of FA utilization in both physiological contexts and within cancer cells, focusing on the metabolism of TGs, cholesteryl esters (CEs), and mitochondrial FA oxidation. Emphasis is placed on the potential toxicity associated with non-esterified FAs in cytosolic and mitochondrial compartments. Additionally, we discuss mechanisms that lead to increased LD biogenesis due to an inhibited mitochondrial import of FAs.
- MeSH
- Humans MeSH
- Lipid Droplets * metabolism MeSH
- Fatty Acids * metabolism MeSH
- Lipid Metabolism MeSH
- Mitochondria * metabolism MeSH
- Oxidation-Reduction MeSH
- Triglycerides metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH