Interaction chromatography
Dotaz
Zobrazit nápovědu
Epilepsy, affecting over 50 million people globally, presents a significant neurological challenge. Effective prevention of epileptic seizures relies on proper administration and monitoring of Anti-Seizure Medication (ASMs). Therapeutic Drug Monitoring (TDM) ensures optimal dosage adjustment, minimizing adverse effects and potential drug interactions. While traditional venous blood collection for TDM may be stressful, emerging alternative sampling methods, particularly Dried Blood Spot (DBS) or oral fluid offer less invasive way of sampling. This study aimed to develop and validate an analytical method for the determination of lamotrigine in such alternative samples. The sample, either DBS or oral fluid, was subjected to extraction, evaporation, and reconstitution in 15 % acetonitrile containing 0.1 % formic acid. A Kinetex C18 Polar column was used for liquid chromatographic separation and MS in ESI+ mode was used for detection and quantitation of lamotrigine using an isotopically labelled internal standard according to EMA guidelines. The calibration range of the developed method enables the determination of lamotrigine in the concentration range of 1-30 μg/mL in DBS and 0.5-20 μg/mL in oral fluid. Oral fluid and DBS samples from patients treated with lamotrigine analysed by the developed method were compared to plasma concentrations measured by the hospital's accredited laboratory. Preliminary results indicate a promising potential for these alternative matrices in clinical TDM applications. By offering a less invasive sampling approach, this method improves the accessibility and safety of pharmacotherapy for epilepsy patients. The results of this study lay the foundation for further clinical applications by implementing alternative matrix TDM, which may significantly advance personalized care in epilepsy management.
- MeSH
- antikonvulziva * analýza krev MeSH
- chromatografie kapalinová metody MeSH
- epilepsie farmakoterapie MeSH
- kalibrace MeSH
- kapalinová chromatografie-hmotnostní spektrometrie MeSH
- lamotrigin * analýza krev MeSH
- lidé MeSH
- limita detekce MeSH
- monitorování léčiv * metody MeSH
- reprodukovatelnost výsledků MeSH
- sliny * chemie MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- test suché kapky krve * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
Background: A hallmark of cancer is the presence of an immunosuppressive tumor microenvironment (TME). Immunosuppressive M2 macrophages (MΦs) in the TME facilitate escape from immune surveillance and promote tumor growth; therefore, TME-induced immunosuppression is a potent immunotherapeutic approach to treating cancer. Methods: Cancer cell-secreted proteins were detected by using liquid chromatography-mass spectrometry (LC-MS). Neutralizing antibodies (nAbs) were used to assess which proteins were involved in MΦs polarization and differentiation. The protein-protein interaction was characterized using co-immunoprecipitation and immunofluorescence assays. Cancer-secreted heat shock protein 70 (Hsp70) protein was quantified using an enzyme-linked immunosorbent assay (ELISA). MΦ polarization and tumor growth were assessed in vivo with subcutaneous LLC-GFP tumor models and toll-like receptor 2 (TLR2) knockout mice; in vitro assessments were conducted using TLR2 knockout and both LLC-GFP and LN227 lentiviral-mediated knockdown (KD) cells. Results: Cancer cells released a secreted form of Hsp70 that acted on MΦ TLR2 to upregulate Mer receptor tyrosine kinase (MerTK) and induce MΦ M2 polarization. Hsp70 nAbs led to a reduction in CD14 expression by 75% in THP-1 cells in response to Gli36 EMD-CM. In addition, neutralizing TLR2 nAbs resulted in a 30% and 50% reduction in CD14 expression on THP-1 cells in response to MiaPaCa-2 and Gli36 exosome/microparticle-depleted conditioned media (EMD-CMs), respectively. Hsp70, TLR2, and MerTK formed a protein complex. Tumor growth and intra-tumor M2 MΦs were significantly reduced upon cancer cell Hsp70 knockdown and in TLR2 knockout mice. Conclusions: Cancer-secreted Hsp70 interacts with TLR2, upregulates MerTK on MΦs, and induces immunosuppressive MΦ M2 polarization. This previously unreported action of secreted Hsp70 suggests that disrupting the Hsp70-TLR2-MerTK interaction could serve as a promising immunotherapeutic approach to mitigate TME immunosuppression in solid cancers.
- Publikační typ
- časopisecké články MeSH
Introduction: The use of Cannabis sativa L. in health care requires stringent care for the optimal production of the bioactive compounds. However, plant phenotypes and the content of secondary metabolites, such as phytocannabinoids, are strongly influenced by external factors, such as nutrient availability. It has been shown that phytocannabinoids can exhibit selective cytotoxicity against various cancer cell lines while protecting healthy tissue from apoptosis. Research Aim: This study aimed to clarify the cytotoxic effect of cannabis extracts on colorectal cell lines by identifying the main active compounds and determining their abundance and activity across all developmental stages of medical cannabis plants cultivated under hydroponic conditions. Materials and Methods: Dimethyl sulfoxide extracts of medical cannabis plants bearing the genotype classified as chemotype I were analyzed by high-performance liquid chromatography, and their cytotoxic activity was determined by measuring cell viability by methylthiazolyldiphenyl-tetrazolium bromide assay on the human colon cancer cell lines, Caco-2 and HT-29, and the normal human epithelial cell line, CCD 841 CoN. Results: The most abundant phytocannabinoid in cannabis extracts was tetrahydrocannabinolic acid (THCA). Its maximum concentrations were reached from the 7th to the 13th plant vegetation week, depending on the nutritional cycle and treatment. Almost all extracts were cytotoxic to the human colorectal cancer (CRC) cell line HT-29 at lower concentrations than the other cell lines. The phytocannabinoids that most affected the cytotoxicity of individual extracts on HT-29 were cannabigerol, Δ9-tetrahydrocannabinol, cannabidiol, cannabigerolic acid, and THCA. The tested model showed almost 70% influence of these cannabinoids. However, THCA alone influenced the cytotoxicity of individual extracts by nearly 65%. Conclusions: Phytocannabinoid extracts from plants of the THCA-dominant chemotype interacted synergistically and showed selective cytotoxicity against the CRC cell line, HT-29. This positive extract response indicates possible therapeutic value.
- MeSH
- Caco-2 buňky MeSH
- Cannabis * chemie MeSH
- hydroponie MeSH
- lidé MeSH
- marihuana pro léčebné účely * MeSH
- tetrahydrokanabinol analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
SCOPE: This multi-omic study investigates the bidirectional interactions between gut microbiota and silymarin metabolism, highlighting the differential effects across various age groups. Silymarin, the extract from Silybum marianum (milk thistle), is commonly used for its hepatoprotective effects. METHODS AND RESULTS: An in vitro fermentation colon model was used with microbiota from 20 stool samples obtained from healthy donors divided into two age groups. A combination of three analytical advanced techniques, namely proton nuclear magnetic resonance (1H NMR), next-generation sequencing (NGS), and liquid chromatography-mass spectrometry (LC-MS) was used to determine silymarin microbial metabolites over 24 h, overall metabolome, and microbiota composition. Silymarin at a low diet-relevant dose of 50 μg mL-1 significantly altered gut microbiota metabolism, reducing short-chain fatty acid (acetate, butyrate, propionate) production, glucose utilization, and increasing alpha-diversity. Notably, the study reveals age-related differences in silymarin catabolism. Healthy elderly donors (70-80 years) exhibited a significant increase in a specific catabolite associated with Oscillibacter sp., whereas healthy young donors (12-45 years) showed a faster breakdown of silymarin components, particularly isosilybin B, which is associated with higher abundance of Faecalibacterium and Erysipelotrichaceae UCG-003. CONCLUSION: This study provides insights into microbiome functionality in metabolizing dietary flavonolignans, highlighting implications for age-specific nutritional strategies, and advancing our understanding of dietary (poly)phenol metabolism.
- MeSH
- dítě MeSH
- dospělí MeSH
- feces mikrobiologie MeSH
- fermentace MeSH
- kolon * mikrobiologie metabolismus účinky léků MeSH
- kyseliny mastné těkavé metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- silymarin * farmakologie MeSH
- střevní mikroflóra * účinky léků fyziologie MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The ISWI family protein SMARCA5 contains the ATP-binding pocket that coordinates the catalytic Mg2+ ion and water molecules for ATP hydrolysis. In this study, we demonstrate that SMARCA5 can also possess an alternative metal-binding ability. First, we isolated SMARCA5 on the cobalt column (IMAC) to near homogeneity. Examination of the interactions of SMARCA5 with metal-chelating supports showed that, apart from Co2+, it binds to Cu2+, Zn2+ and Ni2+. The efficiency of the binding to the last-listed metal was influenced by the chelating ligand, resulting in a strong preference for Ni-NTA over the Ni-CM-Asp equivalent. To gain insight in the preferential affinity for the Ni-NTA ligand, QM calculations were performed on model systems and metal-ligand complexes with a limited protein fragment of SMARCA5 containing the double-histidine (dHis) motif. The calculations correlated the observed affinity with the relative stability of the d-block metals to tetradentate ligand coordination over tridentate, as well as their overall octahedral coordination capacity. Likewise, binding free energies derived from model imidazole complexes mirrored the observed Ni-NTA/Ni-CM-Asp preferential affinity. Finally, similar calculations on complexes with a SMARCA5 peptide fragment derived from the AlphaFold structural prediction, captured almost accurately the expected relative stability of the TM complexes, and produced a large energetic separation (~10 kcal∙mol-1) between Ni-NTA and Ni-CM-Asp in favour of the former.
- MeSH
- adenosintrifosfatasy MeSH
- chromozomální proteiny, nehistonové metabolismus chemie MeSH
- kovy chemie metabolismus MeSH
- kvantová teorie MeSH
- lidé MeSH
- ligandy MeSH
- molekulární modely MeSH
- restrukturace chromatinu MeSH
- vazba proteinů * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
NF-κB pathway is involved in inflammation; however, recent data shows its role also in cancer development and progression, including metastasis. To understand the role of NF-κB interactome dynamics in cancer, we study the complexity of breast cancer interactome in luminal A breast cancer model and its rearrangement associated with NF-κB modulation. Liquid chromatography-mass spectrometry measurement of 160 size-exclusion chromatography fractions identifies 5460 protein groups. Seven thousand five hundred sixty eight interactions among these proteins have been reconstructed by PrInCE algorithm, of which 2564 have been validated in independent datasets. NF-κB modulation leads to rearrangement of protein complexes involved in NF-κB signaling and immune response, cell cycle regulation, and DNA replication. Central NF-κB transcription regulator RELA co-elutes with interactors of NF-κB activator PRMT5, and these complexes are confirmed by AlphaPulldown prediction. A complementary immunoprecipitation experiment recapitulates RELA interactions with other NF-κB factors, associating NF-κB inhibition with lower binding of NF-κB activators to RELA. This study describes a network of pro-tumorigenic protein interactions and their rearrangement upon NF-κB inhibition with potential therapeutic implications in tumors with high NF-κB activity.
- MeSH
- karcinogeneze metabolismus MeSH
- lidé MeSH
- mapování interakce mezi proteiny MeSH
- mapy interakcí proteinů * MeSH
- nádorové buněčné linie MeSH
- nádory prsu * metabolismus patologie MeSH
- NF-kappa B * metabolismus MeSH
- proteinarginin-N-methyltransferasy metabolismus MeSH
- signální transdukce MeSH
- transkripční faktor RelA * metabolismus MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: The laboratory diagnosis of inherited metabolic disorders (IMD) has undergone significant development in recent decades, mainly due to the use of mass spectrometry, which allows rapid multicomponent analysis of a wide range of metabolites. Combined with advanced software tools, the diagnosis becomes more efficient as a benefit for both physicians and patients. METHODS: A hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry assay for determination of urinary purines, pyrimidines, N-acylglycines, N-acetylated amino acids, sugars, sugar alcohols and other diagnostically important biomarkers was developed and validated. Evaluation of the results consisting of utilisation of robust scaling and advanced visualization tools is simple and even suitable for urgent requirements. RESULTS: The developed method, covering 65 biomarkers, provides a comprehensive diagnostic platform for 51 IMD. For most analytes, linearity with R2 > 0.99, intra and inter-day accuracy between 80 and 120 % and precision lower than 20 % were achieved. Diagnostic workflow was evaluated on 47 patients and External Quality Assurance samples involving a total of 24 different IMD. Over seven years, more than 2300 urine samples from patients suspected for IMD have been routinely analysed. CONCLUSIONS: This method offers the advantage of a broad coverage of intermediate metabolites of interest and therefore may be a potential alternative and simplification for clinical laboratories that use multiple methods for screening these markers.
There is increasing research interest in using mesoporous silica for the delivery of poorly water-soluble drugs that are stabilized in a noncrystalline form. Most research has been done on ordered silica, whereas far fewer studies have been published on using nonordered mesoporous silica, and little is known about intrinsic drug affinity to the silica surface. The present mechanistic study uses inverse gas chromatography (IGC) to analyze the surface energies of three different commercially available disordered mesoporous silica grades in the gas phase. Using the more drug-like probe molecule octane instead of nitrogen, the concept of a "drug-accessible surface area" is hereby introduced, and the effect on drug monolayer capacity is addressed. In addition, enthalpic interactions of molecules with the silica surface were calculated based on molecular mechanics, and entropic energy contributions of volatiles were estimated considering molecular flexibility. These free energy contributions were used in a regression model, giving a successful comparison with experimental desorption energies from IGC. It is proposed that a simplified model for drugs based only on the enthalpic interactions can provide an affinity ranking to the silica surface. Following this preformulation research on mesoporous silica, future studies may harness the presented concepts to guide formulation scientists.
- MeSH
- léčivé přípravky MeSH
- oxid křemičitý * chemie MeSH
- poréznost MeSH
- rozpustnost MeSH
- voda * chemie MeSH
- Publikační typ
- časopisecké články MeSH
Bordetella pertussis is a Gram-negative, strictly human re-emerging respiratory pathogen and the causative agent of whooping cough. Similar to other Gram-negative pathogens, B. pertussis produces the type III secretion system, but its role in the pathogenesis of B. pertussis is enigmatic and yet to be elucidated. Here, we combined RNA-seq, LC-MS/MS, and co-immunoprecipitation techniques to identify and characterize the novel CesT family T3SS chaperone BP2265. We show that this chaperone specifically interacts with the secreted T3SS regulator BtrA and represents the first non-flagellar chaperone required for the secretion of an anti-sigma factor. In its absence, secretion but not production of BtrA and most T3SS substrates is severely impaired. It appears that the role of BtrA in regulating T3SS extends beyond its activity as an antagonist of the sigma factor BtrS. Predictions made by artificial intelligence system AlphaFold support the chaperone function of BP2265 towards BtrA and outline the structural basis for the interaction of BtrA with its target BtrS. We propose to rename BP2265 to BtcB for the Bordetella type III chaperone of BtrA.In addition, the absence of the BtcB chaperone results in increased expression of numerous flagellar genes and several virulence genes. While increased production of flagellar proteins and intimin BipA translated into increased biofilm formation by the mutant, enhanced production of virulence factors resulted in increased cytotoxicity towards human macrophages. We hypothesize that these phenotypic traits result indirectly from impaired secretion of BtrA and altered activity of the BtrA/BtrS regulatory node.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- Bordetella pertussis * metabolismus MeSH
- chromatografie kapalinová MeSH
- lidé MeSH
- pertuse * MeSH
- regulace genové exprese u bakterií MeSH
- sigma faktor genetika MeSH
- tandemová hmotnostní spektrometrie MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Unusual glucose-substituted cardiolipins (Glcx-CLs) in three genera of thermophilic bacteria, having more than one glycosidically linked glucose to the hydroxyl of the central glycerol of Glcx-CLs were identified for the first time in thermophilic bacteria of the genera Geobacillus, Meiothermus, and Thermus. The number of glucoses reached up to five units. The structure of glycosidically linked oligosaccharides was determined based on shotgun analysis MS (electrospray high-resolution tandem mass spectrometry), partially methylated alditol acetates were identified by GC-MS, both electron ionization (EI) and positive chemical ionization (PCI), hydrophilic interaction liquid chromatography (HILIC) separation and identification of CLs glycosides by high resolution MS-ESI, and digestion by specific glycosidases.
- MeSH
- Bacteria MeSH
- chromatografie kapalinová metody MeSH
- glukosa MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací metody MeSH
- kardiolipiny * analýza MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- Publikační typ
- časopisecké články MeSH