Machine learning algorithms
Dotaz
Zobrazit nápovědu
Techniky strojového učení jsou metody, které umožní vytvořit z trénovací množiny případů model pro kategorie dat tak, že mohou být nové (neznámé) případy zařazeny do jedné nebo více kategorií schématem odpovídajícím modelu. Pro tento typ analýzy jsou velmi vhodná data ze studií sledujících určitou skupinu osob s opakovaným sběrem dat stejného typu. K vyhledávání znalostí z medicínských dat bylo užito různých algoritmů strojového učení. Bylo testováno několik algoritmů tak, aby bylo možno pokrýt většinu způsobů učení s učitelem. Byly provedeny dva typy pokusů. Jeden hledal vztahy mezi atributy, druhý testoval predikci budoucích příhod. Pro pokusy v tomto sdělení byla užita data z dvacet let trvající longitudinální primárně preventivní studie rizikových faktorů (RF) aterosklerózy u mužů středního věku. Studie se nazývá STULONG (LONGitudinal STUdy). Výsledky ukazují, že některé metody předpovídají některé poruchy lépe než jiné a že je tedy vhodné použít všechny algoritmy najednou a posuzovat spolehlivost výsledku na základě známého trendu každé metody. Algoritmy strojového učení byly také použity k předpovědi příčiny úmrtí. V tomto případě byly výsledky nevalné, pravděpodobně pro malé množství informace ve vstupních položkách v datového souboru.
Machine learning techniques are methods that given a training set of examples infer a model for the categories of the data, so that new (unknown) examples could be assigned to one or more categories by pattern matching within the model. The data from follow-up studies with repeated collection of the same type of data are very suitable for this analysis. Machine learning algorithms belonging to a variety of paradigms have been applied to knowledge discovery on medical data. All the used algorithms belong to the supervised learning paradigm. Several algorithms have been tested, trying to cover most of the kinds of supervised learning. Two kinds of experiments have been carried out. The first is intended to discover associations between attributes. The second kind is intended to test prediction of future disorders. For the experiments in this paper the data used was from the twenty years lasting primary preventive longitudinal study of the risk factors (RF) of atherosclerosis in middle aged men. Study is named STULONG (LONGitudinal STUdy). The results show that some methods predict some disorders better than others, so it is interesting to use all the algorithms at a time and consider the result confidence based upon the known tendency of each method. The machine learning algorithms have been also used in the prediction of death cause, obtaining poor results in this case, maybe due to the small amount of information (entries) of this type in the dataset.
- Klíčová slova
- dobývání znalostí, strojové učení s učitelem, vytěžování z biomedicínských dat, rizikové faktory aterosklerózy,
- MeSH
- algoritmy MeSH
- ateroskleróza diagnóza MeSH
- databáze faktografické MeSH
- financování organizované MeSH
- lidé středního věku MeSH
- lidé MeSH
- metody pro podporu rozhodování MeSH
- prognóza MeSH
- rizikové faktory MeSH
- systémy pro podporu klinického rozhodování MeSH
- ukládání a vyhledávání informací MeSH
- znalostní báze MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
Pathophysiological recordings of patients measured from various testing methods are frequently used in the medical field for determining symptoms as well as for probability prediction for selected diseases. There are numerous symptoms among the Parkinson's disease (PD) population, however changes in speech and articulation – is potentially the most significant biomarker. This article is focused on PD diagnosis classification based on their speech signals using pattern recognition methods (AdaBoost, Bagged trees, Quadratic SVM and k-NN). The dataset investigated in the article consists of 30 PD and 30 HC individuals' voice measurements, with each individual being represented with 2 recordings within the dataset. Training signals for PD and HC underwent an extraction of relatively well-discriminating features relating to energy and spectral speech properties. Model implementations included a 5-fold cross validation. The accuracy of the values obtained employing the models was calculated using the confusion matrix. The average value of the overall accuracy = 82.3 % and averaged AUC = 0.88 (min. AUC = 0.86) on the available data.
Fragmented QRS (fQRS) is an electrocardiographic (ECG) marker of myocardial conduction abnormality, characterized by additional notches in the QRS complex. The presence of fQRS has been associated with an increased risk of all-cause mortality and arrhythmia in patients with cardiovascular disease. However, current binary visual analysis is prone to intra- and inter-observer variability and different definitions are problematic in clinical practice. Therefore, objective quantification of fQRS is needed and could further improve risk stratification of these patients. We present an automated method for fQRS detection and quantification. First, a novel robust QRS complex segmentation strategy is proposed, which combines multi-lead information and excludes abnormal heartbeats automatically. Afterwards extracted features, based on variational mode decomposition (VMD), phase-rectified signal averaging (PRSA) and the number of baseline-crossings of the ECG, were used to train a machine learning classifier (Support Vector Machine) to discriminate fragmented from non-fragmented ECG-traces using multi-center data and combining different fQRS criteria used in clinical settings. The best model was trained on the combination of two independent previously annotated datasets and, compared to these visual fQRS annotations, achieved Kappa scores of 0.68 and 0.44, respectively. We also show that the algorithm might be used in both regular sinus rhythm and irregular beats during atrial fibrillation. These results demonstrate that the proposed approach could be relevant for clinical practice by objectively assessing and quantifying fQRS. The study sets the path for further clinical application of the developed automated fQRS algorithm.
- MeSH
- algoritmy MeSH
- elektrokardiografie * metody MeSH
- fibrilace síní * diagnóza MeSH
- lidé MeSH
- strojové učení MeSH
- support vector machine MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
During the lockdown of universities and the COVID-Pandemic most students were restricted to their homes. Novel and instigating teaching methods were required to improve the learning experience and so recent implementations of the annual PhysioNet/Computing in Cardiology (CinC) Challenges posed as a reference. For over 20 years, the challenges have proven repeatedly to be of immense educational value, besides leading to technological advances for specific problems. In this paper, we report results from the class 'Artificial Intelligence in Medicine Challenge', which was implemented as an online project seminar at Technical University Darmstadt, Germany, and which was heavily inspired by the PhysioNet/CinC Challenge 2017 'AF Classification from a Short Single Lead ECG Recording'. Atrial fibrillation is a common cardiac disease and often remains undetected. Therefore, we selected the two most promising models of the course and give an insight into the Transformer-based DualNet architecture as well as into the CNN-LSTM-based model and finally a detailed analysis for both. In particular, we show the model performance results of our internal scoring process for all submitted models and the near state-of-the-art model performance for the two named models on the official 2017 challenge test set. Several teams were able to achieve F1scores above/close to 90% on a hidden test-set of Holter recordings. We highlight themes commonly observed among participants, and report the results from the self-assessed student evaluation. Finally, the self-assessment of the students reported a notable increase in machine learning knowledge.
- MeSH
- algoritmy MeSH
- COVID-19 * diagnóza MeSH
- elektrokardiografie metody MeSH
- fibrilace síní * diagnóza MeSH
- kontrola infekčních nemocí MeSH
- lidé MeSH
- strojové učení MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The scarcity of high-quality annotations in many application scenarios has recently led to an increasing interest in devising learning techniques that combine unlabeled data with labeled data in a network. In this work, we focus on the label propagation problem in multilayer networks. Our approach is inspired by the heat diffusion model, which shows usefulness in machine learning problems such as classification and dimensionality reduction. We propose a novel boundary-based heat diffusion algorithm that guarantees a closed-form solution with an efficient implementation. We experimentally validated our method on synthetic networks and five real-world multilayer network datasets representing scientific coauthorship, spreading drug adoption among physicians, two bibliographic networks, and a movie network. The results demonstrate the benefits of the proposed algorithm, where our boundary-based heat diffusion dominates the performance of the state-of-the-art methods.
- MeSH
- algoritmy MeSH
- řízené strojové učení * MeSH
- strojové učení MeSH
- vysoká teplota * MeSH
- Publikační typ
- časopisecké články MeSH
Breast cancer survival prediction can have an extreme effect on selection of best treatment protocols. Many approaches such as statistical or machine learning models have been employed to predict the survival prospects of patients, but newer algorithms such as deep learning can be tested with the aim of improving the models and prediction accuracy. In this study, we used machine learning and deep learning approaches to predict breast cancer survival in 4,902 patient records from the University of Malaya Medical Centre Breast Cancer Registry. The results indicated that the multilayer perceptron (MLP), random forest (RF) and decision tree (DT) classifiers could predict survivorship, respectively, with 88.2 %, 83.3 % and 82.5 % accuracy in the tested samples. Support vector machine (SVM) came out to be lower with 80.5 %. In this study, tumour size turned out to be the most important feature for breast cancer survivability prediction. Both deep learning and machine learning methods produce desirable prediction accuracy, but other factors such as parameter configurations and data transformations affect the accuracy of the predictive model.
- MeSH
- analýza přežití MeSH
- deep learning * MeSH
- demografie MeSH
- dospělí MeSH
- kalibrace MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- nádory prsu mortalita MeSH
- neuronové sítě MeSH
- rozhodovací stromy MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- support vector machine MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Electroencephalography (EEG) has emerged as a primary non-invasive and mobile modality for understanding the complex workings of the human brain, providing invaluable insights into cognitive processes, neurological disorders, and brain-computer interfaces. Nevertheless, the volume of EEG data, the presence of artifacts, the selection of optimal channels, and the need for feature extraction from EEG data present considerable challenges in achieving meaningful and distinguishing outcomes for machine learning algorithms utilized to process EEG data. Consequently, the demand for sophisticated optimization techniques has become imperative to overcome these hurdles effectively. Evolutionary algorithms (EAs) and other nature-inspired metaheuristics have been applied as powerful design and optimization tools in recent years, showcasing their significance in addressing various design and optimization problems relevant to brain EEG-based applications. This paper presents a comprehensive survey highlighting the importance of EAs and other metaheuristics in EEG-based applications. The survey is organized according to the main areas where EAs have been applied, namely artifact mitigation, channel selection, feature extraction, feature selection, and signal classification. Finally, the current challenges and future aspects of EAs in the context of EEG-based applications are discussed.
- MeSH
- algoritmy * MeSH
- artefakty MeSH
- elektroencefalografie * metody MeSH
- lidé MeSH
- mozek * fyziologie MeSH
- rozhraní mozek-počítač MeSH
- strojové učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Keratoconus is a disorder characterized by progressive thinning and distortion of the cornea. If detected at an early stage, corneal collagen cross-linking can prevent disease progression and further visual loss. Although advanced forms are easily detected, reliable identification of subclinical disease can be problematic. Several different machine learning algorithms have been used to improve the detection of subclinical keratoconus based on the analysis of multiple types of clinical measures, such as corneal imaging, aberrometry, or biomechanical measurements. OBJECTIVE: The aim of this study is to survey and critically evaluate the literature on the algorithmic detection of subclinical keratoconus and equivalent definitions. METHODS: For this systematic review, we performed a structured search of the following databases: MEDLINE, Embase, and Web of Science and Cochrane Library from January 1, 2010, to October 31, 2020. We included all full-text studies that have used algorithms for the detection of subclinical keratoconus and excluded studies that did not perform validation. This systematic review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) recommendations. RESULTS: We compared the measured parameters and the design of the machine learning algorithms reported in 26 papers that met the inclusion criteria. All salient information required for detailed comparison, including diagnostic criteria, demographic data, sample size, acquisition system, validation details, parameter inputs, machine learning algorithm, and key results are reported in this study. CONCLUSIONS: Machine learning has the potential to improve the detection of subclinical keratoconus or early keratoconus in routine ophthalmic practice. Currently, there is no consensus regarding the corneal parameters that should be included for assessment and the optimal design for the machine learning algorithm. We have identified avenues for further research to improve early detection and stratification of patients for early treatment to prevent disease progression.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
SIGNIFICANCE: Machine learning is increasingly being applied to the classification of microscopic data. In order to detect some complex and dynamic cellular processes, time-resolved live-cell imaging might be necessary. Incorporating the temporal information into the classification process may allow for a better and more specific classification. AIM: We propose a methodology for cell classification based on the time-lapse quantitative phase images (QPIs) gained by digital holographic microscopy (DHM) with the goal of increasing performance of classification of dynamic cellular processes. APPROACH: The methodology was demonstrated by studying epithelial-mesenchymal transition (EMT) which entails major and distinct time-dependent morphological changes. The time-lapse QPIs of EMT were obtained over a 48-h period and specific novel features representing the dynamic cell behavior were extracted. The two distinct end-state phenotypes were classified by several supervised machine learning algorithms and the results were compared with the classification performed on single-time-point images. RESULTS: In comparison to the single-time-point approach, our data suggest the incorporation of temporal information into the classification of cell phenotypes during EMT improves performance by nearly 9% in terms of accuracy, and further indicate the potential of DHM to monitor cellular morphological changes. CONCLUSIONS: Proposed approach based on the time-lapse images gained by DHM could improve the monitoring of live cell behavior in an automated fashion and could be further developed into a tool for high-throughput automated analysis of unique cell behavior.