Multimodal Imaging
Dotaz
Zobrazit nápovědu
Simultánní snímání elektroencefalografických dat a funkční magnetické rezonance je moderní multimodální zobrazovací metoda používaná v neurozobrazování. Integruje v sobě výhodné vlastnosti obou modalit. Uplatnění nachází především v epileptologii (identifikace epileptogenního ložiska) a dále obecně při studiu funkčních sítí v mozku. V přehledném referátu je popsána metodika akvizice dat, postupy zpracování dat a uvedeny jsou nejčastější aplikace této metody.
Simultaneously recording electro-encephalograms with functional magnetic resonance imaging data is a new, multimodal neuro-imaging method that integrates the advantages of both modalities. Most often this method is used in epileptology (identification of the epileptogenic focus) and in the studies of functional brain network. This paper provides a brief overview of its data acquisition and processing methods and briefly addresses its most frequently- used applications.
- Klíčová slova
- funkční magnetická rezonance,
- MeSH
- elektroencefalografie metody přístrojové vybavení MeSH
- epilepsie diagnóza MeSH
- financování organizované MeSH
- funkční zobrazování neurálních procesů metody MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody přístrojové vybavení MeSH
- mozek fyziologie patologie radiografie MeSH
- mozkový krevní oběh fyziologie MeSH
- multimodální zobrazování MeSH
- nervová síť fyziologie MeSH
- počítačové zpracování obrazu metody MeSH
- počítačové zpracování signálu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Magnetic iron oxide nanocrystals (MIONs) are established as potent theranostic nanoplatforms due to their biocompatibility and the multifunctionality of their spin-active atomic framework. Recent insights have also unveiled their attractive near-infrared photothermal properties, which are, however, limited by their low near-infrared absorbance, resulting in noncompetitive photothermal conversion efficiencies (PCEs). Herein, we report on the dramatically improved photothermal conversion of condensed clustered MIONs, reaching an ultrahigh PCE of 71% at 808 nm, surpassing the so-far MION-based photothermal agents and even benchmark near-infrared photothermal nanomaterials. Moreover, their surface passivation is achieved through a simple self-assembly process, securing high colloidal stability and structural integrity in complex biological media. The bifunctional polymeric canopy simultaneously provided binding sites for anchoring additional cargo, such as a strong near-infrared-absorbing and fluorescent dye, enabling in vivo optical and photoacoustic imaging in deep tissues, while the iron oxide core ensures detection by magnetic resonance imaging. In vitro studies also highlighted a synergy-amplified photothermal effect that significantly reduces the viability of A549 cancer cells upon 808 nm laser irradiation. Integration of such-previously elusive-photophysical properties with simple and cost-effective nanoengineering through self-assembly represents a significant step toward sophisticated nanotheranostics, with great potential in the field of nanomedicine.
- MeSH
- buňky A549 MeSH
- fotochemické procesy MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- magnetické nanočástice chemie toxicita MeSH
- multimodální zobrazování metody MeSH
- myši MeSH
- optoakustické techniky metody MeSH
- teranostická nanomedicína metody MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Cieľ: Objasniť možnosti a úlohu zobrazovania zadného segmentu oka u pacientov s diagnózou neurofibromatózy typu 1 (NF1) a poukázať na výskyt prejavov tohto ochorenia u detskej populácie na Slovensku. Materiál a metodika: Donedávna sa očné konzíliá pri pacientoch s NF1 obmedzovali najmä na observáciu Lischových uzlíkov dúhovky a výskytu gliómu zrakového nervu. Rozvoj zobrazovacích možností však umožňuje skúmať a popisovať nové zistenia o očných prejavoch tohto ochorenia. Od októbra 2020 do novembra 2021 sme na našej klinike vyšetrili predný aj zadný segment 76 očí (38 detí – 12 chlapcov a 26 dievčat) s geneticky potvrdenou mutáciou génu NF1. Vek pacientov bol 4–18 rokov. Na prednom segmente sa kontrolovala prítomnosť Lischových uzlíkov biomikroskopicky štrbinovou lampou. Na zadnom segmente sa kontrolovala prítomnosť choroidálnych nodulov rôznymi zobrazovacími metódami – fundus kamerou, infračervenou konfokálnou selektívnou laserovou oftalmoskopiou, MultiColor zobrazením, OCT a OCT angiografiou. Všetci pacienti mali realizovanú magnetickú rezonanciu pre možné zistenie gliómu zrakového nervu za účelom diagnos tiky. Sledovali sme koreláciu medzi vekom pacienta, prítomnosťou Lischových uzlíkov a prítomnosťou choroidálnych nodulov. Osem pacien tov malo zároveň iné prejavy ochorenia – gliómy zrakového nervu či mikrovaskulárne zmeny (tzv. „corskscrew“ cievy). Výsledky: Z celkového počtu 38 pacientov boli Lischove uzlíky dúhovky prítomné u 20 pacientov (53 %) a choroidálne noduly u 24 pacientov (63 %). Nebola zistená žiadna pozitívna korelácia medzi prítomnosťou týchto dvoch prejavov v rámci jedného pacienta, či oka, avšak je zrejmá korelácia medzi prítomnosťou choroidálnych nodulov a vekom pacienta. Záver: Z výsledkov možno vyvodiť, že donedávna neznámy očný prejav neurofibromatózy typu 1, choroidálny nodul, má aj u detskej populá cie vyšší výskyt ako Lischove uzlíky a je možné ho jednoducho zobraziť pomocou rôznych zobrazovacích modalít. Dôležité bude zaradiť sledo vanie tohto nálezu medzi štandardné kontroly očných nálezov pri NF1 a veľmi zaujímavé bude korelovať tento nález s presnou mutáciou NF1
Aim: To clarify the possibilities and role of posterior segment imaging in patients with neurofibromatosis type I (NF1), and to show the prevalence of this disease in the pediatric population in Slovakia. Material and methods: Until recently, ophthalmologic consultations in patients with NF1 were limited mainly to the observation of Lisch nodules of the iris and the presence of optic nerve glioma. However, advances in imaging capabilities have made it possible to investigate and describe new f indings concerning the ocular manifestations of this disease. Between October 2020 and November 2021, we examined the anterior and posterior segment of 76 eyes (38 children – 12 boys and 26 girls) with genetically confirmed NF1 gene mutation at our clinic. The age of the patients ranged from 4 to 18 years. The anterior segment was checked for the presence of Lisch nodules biomicroscopically with a slit lamp. On the posterior segment, the presence of choroidal nodules was checked by various imaging methods – fundus camera, infrared confocal selective laser ophthalmoscopy, MultiColor imaging, OCT, and OCT angiography. All the patients had magnetic resonance imaging performed in order to detect potential optic nerve gliomas for the purpose of diagnosis. We observed the correlation between the patients’ age, presence of Lisch nodules and the presence of choroidal nodules. Eight patients also had other manifestations of the disease – optic nerve gliomas or microvascular changes (so-called “corkscrew” vessels). Results: Out of 38 patients, Lisch iris nodules were present in 20 patients (53%) and choroidal nodules in 24 patients (63%). There was no positive correlation between the presence of these two manifestations within the same patient or eye, but there is a clear correlation between the presence of choroidal nodules and patient age. Conclusion: The results suggest that a previously unknown ocular manifestation of neurofibromatosis type I, namely choroidal nodules, has a higher prevalence than Lisch nodules also in the pediatric population and can be easily visualized using various imaging modalities. It will be important to include follow-up observation of this finding among the standard controls for ocular findings in NF1, and it will be very interesting to correlate this f inding with the exact NF1 mutation
- Klíčová slova
- Lischovy uzly, choroidální noduly,
- MeSH
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- multimodální zobrazování klasifikace metody MeSH
- nemoci retiny diagnostické zobrazování diagnóza klasifikace patologie MeSH
- neurofibromatóza 1 * diagnostické zobrazování diagnóza komplikace MeSH
- oční nemoci * diagnostické zobrazování diagnóza klasifikace patologie MeSH
- předškolní dítě MeSH
- zadní segment oční diagnostické zobrazování patologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- předškolní dítě MeSH
- Publikační typ
- klinická studie MeSH
PURPOSE: An artificial site for cell or pancreatic islet transplantation can be created using a polymeric scaffold, even though it suffers subcutaneously from improper vascularisation. A sufficient blood supply is crucial for graft survival and function and can be enhanced by transplantation of mesenchymal stem cells (MSCs). The purpose of this study was to assess the effect of syngeneic MSCs on neoangiogenesis and cell engraftment in an artificial site by multimodal imaging. PROCEDURES: MSCs expressing a gene for luciferase were injected into the artificial subcutaneous site 7 days after scaffold implantation. MRI experiments (anatomical and dynamic contrast-enhanced images) were performed on a 4.7-T scanner using gradient echo sequences. Bioluminescent images were acquired on an IVIS Lumina optical imager. Longitudinal examination was performed for 2 months, and one animal was monitored for 16 months. RESULTS: We confirmed the long-term presence (lasting more than 16 months) of viable donor cells inside the scaffolds using bioluminescence imaging with an optical signal peak appearing on day 3 after MSC implantation. When compared to controls, the tissue perfusion and vessel permeability in the scaffolds were significantly improved at the site with MSCs with a maximal peak on day 9 after MSC transplantation. CONCLUSIONS: Our data suggest that the maximal signal obtained by bioluminescence and magnetic resonance imaging from an artificially created site between 3 and 9 days after MSC transplantation can predict the optimal time range for subsequent cellular or tissue transplantation, including pancreatic islets.
- MeSH
- kontrastní látky MeSH
- luminiscenční měření MeSH
- magnetická rezonanční tomografie MeSH
- mezenchymální kmenové buňky cytologie MeSH
- multimodální zobrazování * MeSH
- potkani inbrední LEW MeSH
- regionální krevní průtok fyziologie MeSH
- reprodukovatelnost výsledků MeSH
- tkáňové podpůrné struktury MeSH
- transplantace mezenchymálních kmenových buněk * MeSH
- umělé buňky * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
To facilitate efficient drug delivery to tumor tissue, several nanomaterials have been designed, with combined diagnostic and therapeutic properties. In this work, we carried out fundamental in vitro and in vivo experiments to assess the labeling efficacy of our novel theranostic nanoprobe, consisting of glycogen conjugated with a red fluorescent probe and gadolinium. Microscopy and resazurin viability assays were used to study cell labeling and cell viability in human metastatic melanoma cell lines. Fluorescence lifetime correlation spectroscopy (FLCS) was done to investigate nanoprobe stability. Magnetic resonance imaging (MRI) was performed to study T₁ relaxivity in vitro, and contrast enhancement in a subcutaneous in vivo tumor model. Efficient cell labeling was demonstrated, while cell viability, cell migration, and cell growth was not affected. FLCS showed that the nanoprobe did not degrade in blood plasma. MRI demonstrated that down to 750 cells/μL of labeled cells in agar phantoms could be detected. In vivo MRI showed that contrast enhancement in tumors was comparable between Omniscan contrast agent and the nanoprobe. In conclusion, we demonstrate for the first time that a non-toxic glycogen-based nanoprobe may effectively visualize tumor cells and tissue, and, in future experiments, we will investigate its therapeutic potential by conjugating therapeutic compounds to the nanoprobe.
- MeSH
- barvení a značení MeSH
- cytoplazma metabolismus MeSH
- fluorescenční spektrometrie MeSH
- glykogen metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- kontrastní látky chemie MeSH
- lidé MeSH
- lyzozomy metabolismus MeSH
- magnetická rezonanční tomografie metody MeSH
- melanom metabolismus patologie MeSH
- molekulární sondy * MeSH
- molekulární zobrazování metody MeSH
- multimodální zobrazování * MeSH
- nádorové buněčné linie MeSH
- nanotechnologie * MeSH
- pohyb buněk MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Avian (ortho)reovirus (ARV), which belongs to Reoviridae family, is a major domestic fowl pathogen and is the causative agent of viral tenosynovitis and chronic respiratory disease in chicken. ARV replicates within cytoplasmic inclusions, so-called viral factories, that form by phase separation and thus belong to a wider class of biological condensates. Here, we evaluate different optical imaging methods that have been developed or adapted to follow formation, fluidity and composition of viral factories and compare them with the complementary structural information obtained by well-established transmission electron microscopy and electron tomography. The molecular and cellular biology aspects for setting up and following virus infection in cells by imaging are described first. We then demonstrate that a wide-field version of fluorescence recovery after photobleaching is an effective tool to measure fluidity of mobile viral factories. A new technique, holotomographic phase microscopy, is then used for imaging of viral factory formation in live cells in three dimensions. Confocal Raman microscopy of infected cells provides "chemical" contrast for label-free segmentation of images and addresses important questions about biomolecular concentrations within viral factories and other biological condensates. Optical imaging is complemented by electron microscopy and tomography which supply higher resolution structural detail, including visualization of individual virions within the three-dimensional cellular context.
Cíl: Využití magnetických nanočástic jako multifunkčních materiálů pro současnou diagnostiku a terapii. Úvod: Rychlý vývoj v oblasti nanotechnologií usnadnil vznik nových nanomateriálů. S tímto trendem je také spojen zvýšený zájem o nano a mikro systémy tvořené magnetickými nosiči. Spojením magnetického nosiče s biologicky aktivní látkou lze dosáhnout unikátních vlastností využitelných v mnoha oblastech biotechnologie a medicíny. Popis problematiky: Mezi nejvíce studované materiály se řadí magnetické nanočástice tvořené oxidy železa. V současné době se velká pozornost věnuje superparamagnetickým nanočásticím oxidů železa, tzv. SPIONs (superparamagnetic iron oxide nanoparticles), které pod určitou hranicí velikosti (1–20 nm) vykazují jednodoménový charakter, který způsobuje jev zvaný superparamagnetismus. Vedle velikosti částic jsou důležité povrchové vlastnosti. Velikost povrchu (řádově 100 m2/g) umožňuje jeho modifikaci, čímž je zvýšena biokompatibilita částic a snížena toxicita. Magnetické nanočástice mají značný potenciál využití v biomedicínských aplikacích, a to zejména v oblasti teranostiky. V současnosti jsou nanočásticové systémy studovány zejména k zesílení kontrastu u zobrazovacích technik MRI, v pozitronové emisní tomografii, případně lze využít přeměny magnetické energie na energii tepelnou, čehož využívá metoda zvaná hypertermie. Další využití představuje separace, analýza buněk nebo značení buněk, které se zdá být slibné v oblasti zobrazovacích metod. Závěr: Jak se ukazuje, problematika uplatnění magnetických nanočástic v lékařství je rozsáhlá. Prvotní výzvou je syntéza těchto nanočástic, přičemž existuje řada postupů, které poskytují nanočástice o různých vlastnostech. Kvůli povaze nanočástic je také nutné věnovat velikou pozornost jejich stabilizaci, aby se předcházelo agregaci a v případě jejich použití jakožto nosiče je taktéž nutné vyřešit problém zachycení požadované látky. Tyto problémy jsou stále předmětem výzkumu, ale i přes tyto obtíže představují magnetické nanočástice potenciální mocný nástroj pro současnou diagnostiku a terapii.
Aim: Application of magnetic nanoparticles as multimodal materials for current diagnostics and therapy. Introduction: Rapid developments in nanotechnology have facilitated the emergence of new nanomaterials. This trend is also associated with an increased interest in nano and micro systems consisting of magnetic carriers. By combining a magnetic vector with a biologically active substance, unique properties can be achieved which can be used in many areas of biotechnology and medicine. Issues description: The most common materials are magnetic nanoparticles synthesised of iron oxides. Currently, widely studied are superparamagnetic iron oxide nanoparticles, socalled SPIONs, which below a certain size range (1–20 nm) exhibit a single-domain character, which causes a phenomenon called superparamagnetism. In addition to particle size, surface properties are important. The surface size (in the order of 100 m2/g) allows its modification, which increases the biocompatibility of particles and reduces toxicity. Magnetic nanoparticles have considerable potential for use in biomedical applications, especially in the field of teranostics. At present, nanoparticle systems are studied mainly as contrast agents in MR imaging techniques, in positron emission tomography, or the conversion of magnetic energy into thermal energy can be used, which uses a method called hyperthermia. Other uses include separation, cell analysis, or cell labeling, which appear promising in imaging methods. Conclusion: As shown, the application of magnetic nanoparticles in medicine is extensive. The primary challenge is the synthesis of these nanoparticles, and there are a number of processes that provide nanoparticles with different properties. Due to the nature of nanoparticles, the care must also be taken to stabilize them in order to prevent aggregation, and in the case of their use as carriers, it is also necessary to solve the problem of entrapment of the desired substance. These problems are still the subject of research, but despite these difficulties, magnetic nanoparticles are a potentially powerful tool for current diagnostics and therapy.
- MeSH
- indukovaná hypertermie MeSH
- kontrastní látky chemie terapeutické užití MeSH
- lidé MeSH
- magnetické nanočástice oxidů železa * chemie MeSH
- magnetické nanočástice chemie terapeutické užití MeSH
- magnetismus MeSH
- multimodální zobrazování MeSH
- pozitronová emisní tomografie MeSH
- teranostická nanomedicína MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
Zeitschrift für praktische Augenheilkunde & augenärztliche Fortbildung, ISSN 1436-0322 39 Suppl. 2, 2018
7 stran : ilustrace ; 27 cm
- MeSH
- angiografie MeSH
- multimodální zobrazování MeSH
- oční nemoci diagnostické zobrazování MeSH
- optická tomografie MeSH
- Konspekt
- Ortopedie. Chirurgie. Oftalmologie
- NLK Obory
- oftalmologie
- diagnostika
- NLK Publikační typ
- brožury
Although myriads of experimental approaches have been published in the field of fungal infection diagnostics, interestingly, in 21st century there is no satisfactory early noninvasive tool for Aspergillus diagnostics with good sensitivity and specificity. In this work, we for the first time described the fungal burden in rat lungs by multimodal imaging approach. The Aspergillus infection was monitored by positron emission tomography and light microscopy employing modified Grocott's methenamine silver staining and eosin counterstaining. Laser ablation inductively coupled plasma mass spectrometry imaging has revealed a dramatic iron increase in fungi-affected areas, which can be presumably attributed to microbial siderophores. Quantitative elemental data were inferred from matrix-matched standards prepared from rat lungs. The iron, silver, and gold MS images collected with variable laser foci revealed that particularly silver or gold can be used as excellent elements useful for sensitively tracking the Aspergillus infection. The limit of detection was determined for both (107) Ag and (197) Au as 0.03 μg/g (5 μm laser focus). The selective incorporation of (107) Ag and (197) Au into fungal cell bodies and low background noise from both elements were confirmed by energy dispersive X-ray scattering utilizing the submicron lateral resolving power of scanning electron microscopy. The low limits of detection and quantitation of both gold and silver make ICP-MS imaging monitoring a viable alternative to standard optical evaluation used in current clinical settings.
- MeSH
- Aspergillus izolace a purifikace patogenita MeSH
- aspergilóza diagnóza diagnostické zobrazování mikrobiologie MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- mikroskopie elektronová rastrovací metody MeSH
- multimodální zobrazování metody MeSH
- plíce diagnostické zobrazování mikrobiologie patologie MeSH
- pozitronová emisní tomografie metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The journal of nuclear medicine, ISSN 0161-5505 Vol. 55, Supplement 2, June 2014
62 stran : ilustrace ; 28 cm
- MeSH
- diagnostické techniky kardiovaskulární MeSH
- diagnostické techniky neurologické MeSH
- diagnostické zobrazování MeSH
- magnetická rezonanční tomografie MeSH
- multimodální zobrazování MeSH
- nukleární lékařství MeSH
- pediatrie MeSH
- pozitronová emisní tomografie MeSH
- radiační onkologie MeSH
- Publikační typ
- sborníky MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- radiologie, nukleární medicína a zobrazovací metody