During metastasis, cancer cells navigate through harsh conditions, including various mechanical forces in the bloodstream, highlighting the need to understand the impact of mechanical and shear stresses on cancer cells. To overcome the current methodological limitations of such research, here we present a new device that replicates similar conditions by applying shear stress on cultured cells. The device provides a less complex, easily accessible alternative to traditional fluidics while generating fluid shear stress values comparable to those in human veins and capillaries. The device allows analyses of large cell numbers in standard cell culture flasks and incubators. Using this device to explore the shear stress-induced responses of various human cell lines, we discovered a previously unknown, reversible pre-cytokinetic block occurring in cells that lose anchorage during mitosis and are kept under constant shear stress. Notably, some cancer cell lines appear to bypass this unorthodox cell-cycle block, suggesting its role as a safety checkpoint to restrict the proliferation of cancer cells in the bloodstream and their overall spreading potential. These findings provide new insights into the diverse responses of normal and cancer cells to shear stress and highlight the potential of our technology for research on circulating tumor cells and metastatic spread.
- MeSH
- Humans MeSH
- Stress, Mechanical * MeSH
- Mitosis MeSH
- Cell Line, Tumor MeSH
- Neoplastic Cells, Circulating pathology MeSH
- Neoplasms pathology MeSH
- Shear Strength MeSH
- Cell Proliferation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Nanrilkefusp alfa (nanril; SOT101) is an interleukin (IL)-15 receptor βγ superagonist that stimulates natural killer (NK) and CD8+ T cells, thereby promoting an innate and adaptive anti-tumor inflammatory microenvironment in mouse tumor models either in monotherapy or combined with an anti-programmed cell death protein 1 (PD-1) antibody. In cynomolgus monkeys, a clinical schedule was identified, which translated into the design of a phase 1/1b clinical trial, AURELIO-03 (NCT04234113). In 51 patients with advanced/metastatic solid tumors, nanril increased the proportions of CD8+ T cells and NK cells in peripheral blood and tumors. It had a favorable safety profile when administered subcutaneously on days 1, 2, 8, and 9 of each 21-day cycle as monotherapy (0.25-15 μg/kg) or combined (1.5-12 μg/kg) with the anti-PD-1 pembrolizumab (200 mg). The most frequent treatment-emergent adverse events were pyrexia, injection site reactions, and chills. Furthermore, early clinical efficacy was observed, including in immune checkpoint blockade-resistant/refractory patients.
- MeSH
- Programmed Cell Death 1 Receptor * antagonists & inhibitors immunology MeSH
- Killer Cells, Natural immunology drug effects MeSH
- CD8-Positive T-Lymphocytes immunology drug effects MeSH
- Adult MeSH
- Antibodies, Monoclonal, Humanized therapeutic use pharmacology MeSH
- Immune Checkpoint Inhibitors pharmacology therapeutic use MeSH
- Middle Aged MeSH
- Humans MeSH
- Macaca fascicularis MeSH
- Neoplasms * drug therapy pathology immunology MeSH
- Aged MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial, Phase I MeSH
Oncogene-induced replication stress has been recognized as a major cause of genome instability in cancer cells. Increased expression of cyclin E1 caused by amplification of the CCNE1 gene is a common cause of replication stress in various cancers. Protein phosphatase magnesium-dependent 1 delta (PPM1D) is a negative regulator of p53 and has been implicated in termination of the cell cycle checkpoint. Amplification of the PPM1D gene or frameshift mutations in its final exon promote tumorigenesis. Here, we show that PPM1D activity further increases the replication stress caused by overexpression of cyclin E1. In particular, we demonstrate that cells expressing a truncated mutant of PPM1D progress faster from G1 to S phase and fail to complete licensing of the replication origins. In addition, we show that transcription-replication collisions and replication fork slowing caused by CCNE1 overexpression are exaggerated in cells expressing the truncated PPM1D. Finally, replication speed and accumulation of focal DNA copy number alterations caused by induction of CCNE1 expression was rescued by pharmacological inhibition of PPM1D. We propose that increased activity of PPM1D suppresses the checkpoint function of p53 and thus promotes genome instability in cells expressing the CCNE1 oncogene.
- MeSH
- Cyclin E genetics metabolism MeSH
- Humans MeSH
- Tumor Suppressor Protein p53 * genetics metabolism MeSH
- Neoplasms * MeSH
- Genomic Instability MeSH
- Protein Phosphatase 2C genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Cell cycle checkpoints, oncogene-induced senescence and programmed cell death represent intrinsic barriers to tumorigenesis. Protein phosphatase magnesium-dependent 1 (PPM1D) is a negative regulator of the tumour suppressor p53 and has been implicated in termination of the DNA damage response. Here, we addressed the consequences of increased PPM1D activity resulting from the gain-of-function truncating mutations in exon 6 of the PPM1D. We show that while control cells permanently exit the cell cycle and reside in senescence in the presence of DNA damage caused by ionising radiation or replication stress induced by the active RAS oncogene, RPE1-hTERT and BJ-hTERT cells carrying the truncated PPM1D continue proliferation in the presence of DNA damage, form micronuclei and accumulate genomic rearrangements revealed by karyotyping. Further, we show that increased PPM1D activity promotes cell growth in the soft agar and formation of tumours in xenograft models. Finally, expression profiling of the transformed clones revealed dysregulation of several oncogenic and tumour suppressor pathways. Our data support the oncogenic potential of PPM1D in the context of exposure to ionising radiation and oncogene-induced replication stress.
- MeSH
- Cell Death genetics MeSH
- Humans MeSH
- Mice MeSH
- Cell Transformation, Neoplastic * genetics MeSH
- Tumor Suppressor Protein p53 genetics metabolism MeSH
- DNA Damage * genetics MeSH
- Cell Proliferation genetics MeSH
- Protein Phosphatase 2C * genetics metabolism MeSH
- Phosphoprotein Phosphatases genetics metabolism MeSH
- Cellular Senescence * genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Standard treatment with neoadjuvant nivolumab plus chemotherapy significantly improves outcomes in patients with resectable non-small-cell lung cancer (NSCLC). Perioperative treatment (i.e., neoadjuvant therapy followed by surgery and adjuvant therapy) with nivolumab may further improve clinical outcomes. METHODS: In this phase 3, randomized, double-blind trial, we assigned adults with resectable stage IIA to IIIB NSCLC to receive neoadjuvant nivolumab plus chemotherapy or neoadjuvant chemotherapy plus placebo every 3 weeks for 4 cycles, followed by surgery and adjuvant nivolumab or placebo every 4 weeks for 1 year. The primary outcome was event-free survival according to blinded independent review. Secondary outcomes were pathological complete response and major pathological response according to blinded independent review, overall survival, and safety. RESULTS: At this prespecified interim analysis (median follow-up, 25.4 months), the percentage of patients with 18-month event-free survival was 70.2% in the nivolumab group and 50.0% in the chemotherapy group (hazard ratio for disease progression or recurrence, abandoned surgery, or death, 0.58; 97.36% confidence interval [CI], 0.42 to 0.81; P<0.001). A pathological complete response occurred in 25.3% of the patients in the nivolumab group and in 4.7% of those in the chemotherapy group (odds ratio, 6.64; 95% CI, 3.40 to 12.97); a major pathological response occurred in 35.4% and 12.1%, respectively (odds ratio, 4.01; 95% CI, 2.48 to 6.49). Grade 3 or 4 treatment-related adverse events occurred in 32.5% of the patients in the nivolumab group and in 25.2% of those in the chemotherapy group. CONCLUSIONS: Perioperative treatment with nivolumab resulted in significantly longer event-free survival than chemotherapy in patients with resectable NSCLC. No new safety signals were observed. (Funded by Bristol Myers Squibb; CheckMate 77T ClinicalTrials.gov number, NCT04025879.).
- MeSH
- Chemotherapy, Adjuvant MeSH
- Progression-Free Survival MeSH
- Adult MeSH
- Double-Blind Method MeSH
- Immune Checkpoint Inhibitors therapeutic use adverse effects MeSH
- Middle Aged MeSH
- Humans MeSH
- Lung Neoplasms * drug therapy mortality surgery pathology MeSH
- Carcinoma, Non-Small-Cell Lung * drug therapy mortality surgery pathology MeSH
- Neoadjuvant Therapy * MeSH
- Nivolumab * therapeutic use adverse effects administration & dosage MeSH
- Pneumonectomy MeSH
- Antineoplastic Agents, Immunological therapeutic use adverse effects administration & dosage MeSH
- Antineoplastic Combined Chemotherapy Protocols therapeutic use adverse effects MeSH
- Aged MeSH
- Neoplasm Staging MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial, Phase III MeSH
- Multicenter Study MeSH
- Randomized Controlled Trial MeSH
Patients with myelodysplastic neoplasms (MDS) are classified according to the risk of acute myeloid leukemia transformation. Some lower-risk MDS patients (LR-MDS) progress rapidly despite expected good prognosis. Using diagnostic samples, we aimed to uncover the mechanisms of this accelerated progression at the transcriptome level. RNAseq was performed on CD34+ ribodepleted RNA samples from 53 LR-MDS patients without accelerated progression (stMDS) and 8 who progressed within 20 months (prMDS); 845 genes were differentially expressed (ІlogFCІ > 1, FDR < 0.01) between these groups. stMDS CD34+ cells exhibited transcriptional signatures of actively cycling, megakaryocyte/erythrocyte lineage-primed progenitors, with upregulation of cell cycle checkpoints and stress pathways, which presumably form a tumor-suppressing barrier. Conversely, cell cycle, DNA damage response (DDR) and energy metabolism-related pathways were downregulated in prMDS samples, whereas cell adhesion processes were upregulated. Also, prMDS samples showed high levels of aberrant splicing and global lncRNA expression that may contribute to the attenuation of DDR pathways. We observed overexpression of multiple oncogenes and diminished differentiation in prMDS; the expression of ZEB1 and NEK3, genes not previously associated with MDS prognosis, might serve as potential biomarkers for LR-MDS progression. Our 19-gene DDR signature showed a significant predictive power for LR-MDS progression. In validation samples (stMDS = 3, prMDS = 4), the key markers and signatures retained their significance. Collectively, accelerated progression of LR-MDS appears to be associated with transcriptome patterns of a quiescent-like cell state, reduced lineage differentiation and suppressed DDR, inherent to CD34+ cells. The attenuation of DDR-related gene-expression signature may refine risk assessment in LR-MDS patients.
- MeSH
- Cell Adhesion MeSH
- Cell Cycle MeSH
- NIMA-Related Kinases genetics metabolism MeSH
- Humans MeSH
- Myelodysplastic Syndromes * genetics MeSH
- Neoplasms * MeSH
- DNA Repair MeSH
- Transcriptome MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Microtubule dynamic is exceptionally sensitive to modulation by small-molecule ligands. Our previous work presented the preparation of microtubule-targeting estradiol dimer (ED) with anticancer activity. In the present study, we explore the effect of selected linkers on the biological activity of the dimer. The linkers were designed as five-atom chains with carbon, nitrogen or oxygen in their centre. In addition, the central nitrogen was modified by a benzyl group with hydroxy or methoxy substituents and one derivative possessed an extended linker length. Thirteen new dimers were subjected to cytotoxicity assay and cell cycle profiling. Dimers containing linker with benzyl moiety substituted with one or more methoxy groups and longer branched ones were found inactive, whereas other structures had comparable efficacy as the original ED (e.g. D1 with IC50 = 1.53 μM). Cell cycle analysis and immunofluorescence proved the interference of dimers with microtubule assembly and mitosis. The proposed in silico model and calculated binding free energy by the MM-PBSA method were closely correlated with in vitro tubulin assembly assay.
- MeSH
- Apoptosis MeSH
- Ethinyl Estradiol * chemistry pharmacology MeSH
- G2 Phase Cell Cycle Checkpoints drug effects MeSH
- Microtubules MeSH
- Tubulin Modulators * chemistry pharmacology MeSH
- Cell Line, Tumor MeSH
- Antineoplastic Agents * chemistry pharmacology MeSH
- Triazoles * chemistry pharmacology MeSH
- Tubulin * metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: LACTB was recently identified as a mitochondrial tumour suppressor that negatively affects cancer cell proliferation by inducing cell death and/or differentiation, depending on the cell type and tissue. However, the detailed mechanism underlying the LACTB-induced cancer cell death is largely unknown. METHODS: We used cell-based, either in 2D or 3D conditions, and in vivo experiments to understand the LACTB mechanisms. In this regard, protein array followed by an enrichment analysis, cell proliferation assays using different compounds, western blot analysis, flow cytometry and immunofluorescence were performed. Differences between quantitative variables following normal distribution were valuated using Student t test for paired or no-paired samples according to the experiment. For in vivo experiments differences in tumour growth were analyzed by 2-way ANOVA. RESULTS: We show, that LACTB expression leads to cell cycle arrest in G1 phase and increase of DNA oxidation that leads to activation of intrinsic caspase-independent cell death pathway. This is achieved by an increase of mitochondrial reactive oxygen species since early time points of LACTB induction. CONCLUSION: Our work provides a deeper mechanistic insight into LACTB-mediated cancer-cell death and shows the dynamics of the cellular responses a particular tumor suppressive stimulus might evoke under different genetic landscapes.
- MeSH
- Apoptosis genetics MeSH
- beta-Lactamases genetics metabolism MeSH
- Caspases * genetics metabolism MeSH
- Cell Cycle Checkpoints MeSH
- Humans MeSH
- Membrane Proteins genetics MeSH
- Mitochondrial Proteins genetics MeSH
- Cell Line, Tumor MeSH
- Breast Neoplasms * genetics metabolism MeSH
- Reactive Oxygen Species metabolism MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
... Uldrijan) 186 -- 13.1 Cell cycle phases 186 -- 13.2 Cyclin - CDK complexes 187 -- 13.3 Regulation of ... ... cyclin levels during the cell cycle 189 -- 13.4 Cell cycle checkpoints 190 -- 13.5 CDK inhibitors 190 ... ... -- 13.6 The Rb protein and cell cycle regulation by signals from the cell external environment 192 - ... ... - 13.7 The p53 protein and cell cycle regulation in response to DNA damage 194 -- 13.8 Disrupted cell ... ... cycle control in cancer cells 195 -- MEDICAL BIOLOGY I - Cell and Molecular Biology -- 14 Cell division ...
1st edition 268 stran : ilustrace ; 30 cm
- Conspectus
- Biochemie. Molekulární biologie. Biofyzika
- Učební osnovy. Vyučovací předměty. Učebnice
- NML Fields
- biologie
- NML Publication type
- učebnice vysokých škol
BACKGROUND: Cell cycle regulation influences the proliferation of granulosa cells and affects many processes related to ovarian folliclular growth and ovulation. Abnormal regulation of the cell cycle can lead to many diseases within the ovary. The aim of this study was to describe the expression profile of genes within granulosa cells, which are related to the formation of the cytoskeleton, organization of cell organelles inside the cell, and regulation of cell division. Established in vitro primary cultures from porcine ovarian follicle granulosa cells were maintained for 48, 96, 144 h and evaluated via microarray expression analysis. RESULTS: Analyzed genes were assigned to 12 gene ontology groups "actin cytoskeleton organization", "actin filament organization", "actin filament-based process", "cell-matrix adhesion", "cell-substrate adhesion", "chromosome segregation", "chromosome separation", "cytoskeleton organization", "DNA integrity checkpoint", "DNA replication initiation", "organelle fision", "organelle organization". Among the genes with significantly changed expression, those whose role in processes within the ovary are selected for consideration. Genes with increased expression include (ITGA11, CNN1, CCl2, TPM2, ACTN1, VCAM-1, COL3A1, GSN, FRMD6, PLK2). Genes with reduced expression inlcude (KIF14, TACC3, ESPL1, CDC45, TTK, CDC20, CDK1, FBXO5, NEK2-NIMA, CCNE2). For the results obtained by microarray expressions, quantitative validation by RT-qPCR was performed. CONCLUSIONS: The results indicated expression profile of genes, which can be considered as new molecular markers of cellular processes involved in signaling, cell structure organization. The expression profile of selected genes brings new insight into regulation of physiological processes in porcine follicular granulosa cells during primary in vitro culture.
- Publication type
- Journal Article MeSH