complex polysaccharides Dotaz Zobrazit nápovědu
A set of fungal polysaccharide samples was characterised by elemental analysis and FTIR spectroscopy and compared with reference chitins, chitosans and β-D-glucans. The nitrogen to carbon (N/C) values and FTIR spectra were used to compare the samples based on their composition. It was found that the N/C ratio correlates well with deacetylation degree (DD) of chitosans and chitin/glucan ratio R(chit) of fungal chitin – β-D-glucan complexes with the exception of some samples having significant nitrogen and/or carbon admixtures. FTIR spectroscopy was indicative for the N-acetylation of chitins (chitosans) as well as for the chitin (chitosan) contribution to fungal polysaccharide preparations. Multivariate analyses of the FTIR data (HCA, PCA) discriminated samples and reference materials into several clusters depending on their similarity. Chitosan lactates, chitosan – β-D-glucans and chitin – β-D-glucans of high and low amounts of chitin were successfully discriminated from the reference polysaccharides and from each other. The proposed procedures based on the N/C ratio and multivariate analyses of FTIR spectra may be used in screening fungal polysaccharide preparations.
Oyster mushrooms are an interesting source of biologically active glucans and other polysaccharides. This work is devoted to the isolation and structural characterization of polysaccharides from basidiocarps of the cultivated oyster mushroom, Pleurotus ostreatus. Five polysaccharidic fractions were obtained by subsequent extraction with cold water, hot water and two subsequent extractions with 1 m sodium hydroxide. Branched partially methoxylated mannogalactan and slightly branched (1→6)-β-d-glucan predominated in cold- and hot-water-soluble fractions, respectively. Alternatively, these polysaccharides were obtained by only hot water extraction and subsequent two-stage chromatographic separation. The alkali-soluble parts originating from the first alkali extraction were then fractionated by dissolution in dimethyl sulfoxide (DMSO). The polysaccharide insoluble in DMSO was identified as linear (1→3)-α-d-glucan, while branched (1→3)(1→6)-β-d-glucans were found to be soluble in DMSO. The second alkaline extract contained the mentioned branched β-d-glucan together with some proteins. Finally, the alkali insoluble part was a cell wall complex of chitin and β-d-glucans.
- MeSH
- chemická frakcionace MeSH
- chromatografie MeSH
- fungální polysacharidy chemie izolace a purifikace MeSH
- fytonutrienty chemie izolace a purifikace MeSH
- glukany chemie MeSH
- molekulární struktura MeSH
- monosacharidy chemie MeSH
- Pleurotus chemie MeSH
- plodnice hub chemie MeSH
- spektrální analýza MeSH
- Publikační typ
- časopisecké články MeSH
Hot water extract from biomass of heterotrophic mutant green alga Parachlorella kessleri HY1 (Chlorellaceae) was deproteinised, and three polysaccharidic fractions were obtained by preparative chromatography. The low-molecular fraction (1.5 × 104g mol-1) was defined mainly as branched O-2-β-xylo-(1→3)-β-galactofuranan where xylose is partially methylated at O-4. Two high-molecular fractions (3.05 × 105 and 9.84 × 104g mol-1) were complex polysaccharides containing α-l-rhamnan and xylogalactofuranan parts in different ratios. The polysaccharides were well soluble in hot water and, upon cooling, tended to self-segregate. Immunomodulatory activities of the obtained fractions were preliminary tested using ELISA, FACS and ImmunoSpot kits. The polysaccharides increased the TNF-α production in melanoma bearing mice with much higher intensity than in healthy mice. This was in agreement with the FACS results on T and B cells indicating their possibly secondary activation by innate immunity cells.
- MeSH
- B-lymfocyty účinky léků imunologie patologie MeSH
- CD antigeny genetika imunologie MeSH
- Chlorophyta chemie MeSH
- imunologické faktory chemie izolace a purifikace farmakologie MeSH
- interferon gama genetika imunologie MeSH
- interleukin-2 genetika imunologie MeSH
- interleukin-4 genetika imunologie MeSH
- lipopolysacharidy antagonisté a inhibitory farmakologie MeSH
- melanom imunologie patologie MeSH
- metylace MeSH
- molekulová hmotnost MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádory kůže imunologie patologie MeSH
- polysacharidy chemie izolace a purifikace farmakologie MeSH
- primární buněčná kultura MeSH
- regulace genové exprese účinky léků MeSH
- rostlinné extrakty chemie MeSH
- rozpustnost MeSH
- sacharidové sekvence MeSH
- T-lymfocyty účinky léků imunologie patologie MeSH
- TNF-alfa genetika imunologie MeSH
- voda MeSH
- xylosa chemie izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
ETHNOPHARMACOLOGICAL RELEVANCE: Geranium sanguineum L. is used for treatment of inflammations, anemia, malignant diseases of the blood-forming organs, diarrhea, respiratory infections, etc. Only flavonoids in root extracts have been elucidated as immunostimulating and anti-inflammatory compounds, and polysaccharides in the herb have not been examined. AIM OF THE STUDY: to compare the chemical features of polysaccharide complexes (PSCs) from leaves (GSL-PSC) and roots (GSR-PSC) of G. sanguineum, as well as their immunomodulatory activities on leukocytes after inflammation, and effects on the growth of different bacteria. MATERIALS AND METHODS: The samples were isolated by water extraction and their structural features were studied by 2D NMR spectroscopy. The stimulatory effects of both PSCs on human leukocytes were analyzed with flow cytometry. Their suppressive activities on the oxidative burst in blood and derived neutrophils against opsonized zymosan and phorbol myristate acetate were investigated. The effects of the samples on viability, NO and interleukin 6 (IL-6) syntheses in RAW264.7 cells after inflammation with lipopolysaccharides (LPS) were tested. The prebiotic and anti-biofilm activities of the PSCs were evaluated. RESULTS: The total carbohydrate content in the samples was significant (73.6-76.8%). GSL-PSC contained pectins, which were rich in homogalacturonan (HG), and smaller amounts of rhamnogalacturonan (RG) type I, decorated by 1,5-α-L-Araf, 1,4- and 1,6-β-D-Galp chains. GSR-PSC contained starch, followed by pectins with lower HG content and more RG-I regions, substituted by 1 → 3,5-α-L-arabinans and 1 → 3,6-β-D-galactans. GSL-PSC and GSR-PSC (200 μg/mL) increased monocyte and granulocyte cell counts, but GSR-PSC also elevated T helper and B cell levels in a normal and activated state. GSR-PSC triggered a dose-dependent (50-200 μg/mL) oxidative burst in blood, but alleviated it after inflammation even in blood-derived neutrophils. It was free of LPS, and activated NO and IL-6 productions in RAW264.7 cells better than GSL-PSC, without affecting their viability. Both PSCs (2.0%, w/v) stimulated probiotic co-cultures between Clostridium beijerinckii strains and Lactobacillus sp. ZK9, and inhibited the growth and biofilm formation of Escherichia coli, Streptococcus mutans and Salmonella enterica. CONCLUSIONS: The PSs in G. sanguineum could be involved in the stimulatory effects on blood-forming organs and anti-inflammatory action of aqueous root extracts in case of infections. These PSs should be included in synbiotic foods to support the treatment of inflammations and infections in the gut.
- MeSH
- antiflogistika MeSH
- Geranium * chemie MeSH
- interleukin-6 MeSH
- lidé MeSH
- lipopolysacharidy MeSH
- myši MeSH
- pektiny farmakologie MeSH
- polysacharidy * farmakologie MeSH
- RAW 264.7 buňky MeSH
- zánět farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Polysaccharides are long carbohydrate molecules of monosaccharide units joined together by glycosidic bonds. These biological polymers have emerged as promising materials for tissue engineering due to their biocompatibility, mostly good availability and tailorable properties. This complex group of biomolecules can be classified using several criteria, such as chemical composition (homo- and heteropolysaccharides), structure (linear and branched), function in the organism (structural, storage and secreted polysaccharides), or source (animals, plants, microorganisms). Polysaccharides most widely used in tissue engineering include starch, cellulose, chitosan, pectins, alginate, agar, dextran, pullulan, gellan, xanthan and glycosaminoglycans. Polysaccharides have been applied for engineering and regeneration of practically all tissues, though mostly at the experimental level. Polysaccharides have been tested for engineering of blood vessels, myocardium, heart valves, bone, articular and tracheal cartilage, intervertebral discs, menisci, skin, liver, skeletal muscle, neural tissue, urinary bladder, and also for encapsulation and delivery of pancreatic islets and ovarian follicles. For these purposes, polysaccharides have been applied in various forms, such as injectable hydrogels or porous and fibrous scaffolds, and often in combination with other natural or synthetic polymers or inorganic nanoparticles. The immune response evoked by polysaccharides is usually mild, and can be reduced by purifying the material or by choosing appropriate crosslinking agents.
- MeSH
- biokompatibilní materiály chemická syntéza MeSH
- buněčné kultury přístrojové vybavení metody MeSH
- celulosa chemie MeSH
- cévní protézy MeSH
- cévy cytologie růst a vývoj MeSH
- endoteliální buňky cytologie fyziologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- protézy - design MeSH
- řízená tkáňová regenerace přístrojové vybavení MeSH
- tkáňové inženýrství přístrojové vybavení metody MeSH
- tkáňové podpůrné struktury * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
While it is known that several Actinobacteria produce enzymes that decompose polysaccharides or phenolic compounds in dead plant biomass, the occurrence of these traits in the environment remains largely unclear. The aim of this work was to screen isolated actinobacterial strains to explore their ability to produce extracellular enzymes that participate in the degradation of polysaccharides and their ability to cometabolically transform phenolic compounds of various complexities. Actinobacterial strains were isolated from meadow and forest soils and screened for their ability to grow on lignocellulose. The potential to transform (14)C-labelled phenolic substrates (dehydrogenation polymer (DHP), lignin and catechol) and to produce a range of extracellular, hydrolytic enzymes was investigated in three strains of Streptomyces spp. that possessed high lignocellulose degrading activity. Isolated strains showed high variation in their ability to produce cellulose- and hemicellulose-degrading enzymes and were able to mineralise up to 1.1% and to solubilise up to 4% of poplar lignin and to mineralise up to 11.4% and to solubilise up to 64% of catechol, while only minimal mineralisation of DHP was observed. The results confirm the potential importance of Actinobacteria in lignocellulose degradation, although it is likely that the decomposition of biopolymers is limited to strains that represent only a minor portion of the entire community, while the range of simple, carbon-containing compounds that serve as sources for actinobacterial growth is relatively wide.
- MeSH
- bakteriální proteiny biosyntéza MeSH
- beta-glukosidasa biosyntéza MeSH
- biodegradace MeSH
- biomasa MeSH
- celulosa-1,4-beta-cellobiosidasa biosyntéza MeSH
- celulosa metabolismus MeSH
- hydrolýza MeSH
- katecholy metabolismus MeSH
- kinetika MeSH
- lignin metabolismus MeSH
- Populus chemie MeSH
- půdní mikrobiologie * MeSH
- radioizotopy uhlíku MeSH
- Streptomyces enzymologie izolace a purifikace MeSH
- stromy chemie MeSH
- xylosidasy biosyntéza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Crosslinked 3D porous collagen-polysaccharide scaffolds, prepared by freeze-drying, were modified with bovine platelet lysate (BPL) and evaluated in terms of chemical, physical and biological properties. Natural antibacterial polysaccharides like chitosan, chitin/chitosan-glucan complex and calcium salt of oxidized cellulose (CaOC) incorporated in collagen scaffolds affected not only chemo-physical properties of the composite scaffolds but also improved their biological properties, especially when BPL was presented. Lipophilic BPL formed microspheres in porous scaffolds while reduced by half their swelling ratio. The resistance of collagen sponges to hydrolytic degradation in water depended strongly on chemical crosslinking varying from 60 min to more than one year. According to in-vitro tests, chemically crosslinked scaffolds exhibited a good cellular response, cell-matrix interactions, and biocompatibility of the material. The combination of collagen with natural polysaccharides confirmed a significant positive synergistic effect on cultivation of cells as determined by MTS assay and PicoGreen method, as well as on angiogenesis evaluated by ex ovo Chick Chorioallantoic Membrane (CAM) assay. Contrary, modification only by BLP of pure collagen scaffolds exhibited decreased biocompatibility in comparison to unmodified pure collagen scaffold. We propose that the newly developed crosslinked collagen sponges involving bioactive additives could be used as scaffold for growing cells in systems with low mechanical loading in tissue engineering, especially in dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration.
- MeSH
- buněčná adheze účinky léků MeSH
- buňky 3T3 MeSH
- fibroblasty cytologie účinky léků MeSH
- fyziologická neovaskularizace účinky léků MeSH
- hydrolýza MeSH
- kolagen farmakologie MeSH
- kur domácí MeSH
- myši MeSH
- polysacharidy farmakologie MeSH
- proliferace buněk účinky léků MeSH
- reagencia zkříženě vázaná chemie MeSH
- skot MeSH
- teplota MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- trombocyty metabolismus MeSH
- voda chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Protein glycosylation is one of the most common PTMs and many cell surface receptors, extracellular proteins, and biopharmaceuticals are glycosylated. However, HDX-MS analysis of such important glycoproteins has so far been limited by difficulties in determining the HDX of the protein segments that contain glycans. We have developed a column containing immobilized PNGase Rc (from Rudaea cellulosilytica) that can readily be implemented into a conventional HDX-MS setup to allow improved analysis of glycoproteins. We show that HDX-MS with the PNGase Rc column enables efficient online removal of N-linked glycans and the determination of the HDX of glycosylated regions in several complex glycoproteins. Additionally, we use the PNGase Rc column to perform a comprehensive HDX-MS mapping of the binding epitope of a mAb to c-Met, a complex glycoprotein drug target. Importantly, the column retains high activity in the presence of common quench-buffer additives like TCEP and urea and performed consistent across 114 days of extensive use. Overall, our work shows that HDX-MS with the integrated PNGase Rc column can enable fast and efficient online deglycosylation at harsh quench conditions to provide comprehensive analysis of complex glycoproteins.
- MeSH
- glykopeptidasa MeSH
- glykoproteiny * analýza MeSH
- glykosylace MeSH
- polysacharidy * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH