Numerous studies have reported that increased interleukin 6 (IL-6) and soluble IL-6 receptor (sIL-6) levels induce inflammatory conditions. However, the exact mechanisms by which IL-6 drives inflammatory conditions remain unclear. Therefore, we investigated the potential role of IL-6/sIL-6R in inducing energy metabolism, including glycolysis, oxidative phosphorylation, lactate secretion and Akt/mTOR phosphorylation, in Jurkat cells, and whether IL-6 would increase the risk of developing inflammatory conditions due to the high metabolic profile of the T cells. Jurkat CD4 T-cell lines were stimulated with IL-6/sIL-6R for 24 h prior to 48-h stimulation with anti-CD3/CD28. Lactate secretion, glycolysis and oxidative phosphorylation levels were characterized using the Seahorse XF analyser. The Akt and mTOR phosphorylation status was detected using Western blotting. IL-6/sIL-6R significantly induced glycolysis and oxidative phosphorylation and their related parameters, including glycolytic capacity and maximal respiration, followed by significantly increased lactate secretion. Akt and mTOR phosphorylation were increased, which could have resulted from energy metabolism. Here we show that IL-6 enhanced the metabolic profile of Jurkat cells. This effect could have consequences for the metabolism-related signalling pathways, including Akt and mTOR, suggesting that IL-6 might promote T-cell energy metabolism, where T-cell hyperactivity might increase the inflammatory disease risk. The findings should be validated using studies on primary cells isolated from humans.
- MeSH
- Energy Metabolism * drug effects MeSH
- Phosphorylation drug effects MeSH
- Glycolysis drug effects MeSH
- Interleukin-6 * metabolism MeSH
- Jurkat Cells MeSH
- Lactic Acid metabolism MeSH
- Humans MeSH
- Oxidative Phosphorylation drug effects MeSH
- Proto-Oncogene Proteins c-akt * metabolism MeSH
- Signal Transduction * drug effects MeSH
- TOR Serine-Threonine Kinases * metabolism MeSH
- Inflammation * metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Juvenile granulosa cell tumor (JGCT) of the ovary is a rare tumor with distinct clinicopathological and hormonal features primarily affecting young women and children. We conducted a complex clinicopathological, immunohistochemical, and molecular analysis of five cases of JGCT. METHODS: The immunohistochemical examination was performed with 32 markers, including markers that have not been previously investigated. Moreover, DNA next-generation sequencing (NGS) and PTEN methylation analysis was performed. RESULT: We found the expression of calretinin, inhibin A, SF1, FOXL2, CD99, CKAE1/3, ER, PR, AR in all cases. WT1 was expressed in one case. Conversely, the expression of p16, OCT3/4, SALL4, GATA3, Napsin A, SATB2, MUC4, TTF1, and CAIX was completely negative. All tumors showed the wild-type pattern of p53 expression. Regarding predictive markers, all tumors were HER2 negative and did not express PD-L1. Mismatch repair proteins (MMR) showed no loss or restriction of expression, similarly to ARID1A, DPC4, BRG1, and INI1. The molecular analysis revealed AKT1 internal tandem duplication in two tumors. Two other cases exhibited mutations in TERT and EP400 and both developed recurrence. All AKT1-wild type tumors exhibited immunohistochemical loss of PTEN expression. However, no mutations, deletions (as assessed by CNV analysis), or promoter hypermethylation in the PTEN gene were detected. CONCLUSION: The results of our study further support the hypothesis that the pathogenesis of JGCT may be driven by activation of the PIK3/AKT/mTOR pathway. These findings could potentially have future therapeutic implications, as treatment strategies targeting the PTEN/mTOR pathways are currently under investigation.
- MeSH
- Child MeSH
- Phosphatidylinositol 3-Kinases genetics metabolism MeSH
- PTEN Phosphohydrolase genetics metabolism MeSH
- Immunohistochemistry * MeSH
- Humans MeSH
- DNA Methylation MeSH
- Adolescent MeSH
- Granulosa Cell Tumor * pathology genetics metabolism MeSH
- Biomarkers, Tumor * genetics analysis metabolism MeSH
- Ovarian Neoplasms * pathology genetics metabolism MeSH
- Proto-Oncogene Proteins c-akt * metabolism genetics MeSH
- Signal Transduction * MeSH
- TOR Serine-Threonine Kinases * metabolism MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Pathogenic mutations in the genes associated with tuberous sclerosis complex (TSC)/mTOR pathway are linked to histologically diverse renal cell neoplasms, including eosinophilic solid and cystic renal cell carcinoma (ESC RCC), low grade oncocytic tumor (LOT), eosinophilic vacuolated tumor (EVT), and xanthomatous giant cell renal cell carcinoma (XGC RCC). Here, we validate a TSC2 immunohistochemistry (IHC) assay by comparison to genomic data in these neoplasms. Automated TSC2 IHC was performed on formalin-fixed paraffin embedded (FFPE) tissues from 38 genetically-confirmed TSC/mTOR-associated renal tumors (6 ESCs, 16 EVTs, 13 LOTs, 2 XGC and 1 clear cell RCC) and visually scored in a semi-dichotomous fashion compared to internal control tissue. The positive predictive value (PPV) of TSC2 protein loss for underlying pathogenic mutation in TSC2 was 92% (11/12), while the negative predictive value (NPV) of intact TSC2 by IHC for lack of underlying pathogenic mutation in TSC2 was 81% (21/26). Intact TSC2 by IHC was 95% (21/22) specific for absence of underlying pathogenic TSC2 mutation. All the cases lacking TSC2 mutation with intact TSC2 protein had an underlying mutation in TSC1, MTOR or PIK3CA. Loss of TSC2 was 77% (10/13) sensitive for underlying TSC2 truncation mutations and 33% (1/3) sensitive for underlying TSC2 missense mutations. Overall, 73% (8/11) tumors with TSC2 IHC loss and underlying pathogenic alterations in TSC2 showed heterogeneous protein loss, with rare interspersed positively staining tumor cells. These data support TSC2 IHC as a potentially useful assay for the diagnostic workup of renal tumors suspected to belong to the TSC/mTOR-associated subgroups.
- MeSH
- Immunohistochemistry * MeSH
- Carcinoma, Renal Cell * genetics pathology MeSH
- Humans MeSH
- Mutation MeSH
- Biomarkers, Tumor * genetics analysis MeSH
- Tumor Suppressor Proteins * analysis genetics MeSH
- Kidney Neoplasms * genetics pathology MeSH
- Predictive Value of Tests MeSH
- Reproducibility of Results MeSH
- Signal Transduction MeSH
- TOR Serine-Threonine Kinases * metabolism MeSH
- Tuberous Sclerosis Complex 2 Protein * genetics MeSH
- Tuberous Sclerosis genetics pathology diagnosis MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Validation Study MeSH
Sarcoma is a heterogeneous group of malignancies often resistant to conventional chemotherapy and radiation therapy. The phosphatidylinositol-3-kinase/ protein kinase B /mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway has emerged as a critical cancer target due to its central role in regulating key cellular processes such as cell growth, proliferation, survival, and metabolism. Dysregulation of this pathway has been implicated in the development and progression of bone sarcomas (BS) and soft tissue sarcomas (STS). PI3K/Akt/mTOR inhibitors have shown promising preclinical and clinical activity in various cancers. These agents can inhibit the activation of PI3K, Akt, and mTOR, thereby reducing the downstream signaling events that promote tumor growth and survival. In addition, PI3K/Akt/mTOR inhibitors have been shown to enhance the efficacy of other anticancer therapies, such as chemotherapy and radiation therapy. The different types of PI3K/Akt/mTOR inhibitors vary in their specificity, potency, and side effect profiles and may be effective depending on the specific sarcoma type and stage. The molecular targeting of PI3K/Akt/mToR pathway using drugs, phytochemicals, nanomaterials (NMs), and microbe-derived molecules as Pan-PI3K inhibitors, selective PI3K inhibitors, and dual PI3K/mTOR inhibitors have been delineated. While there are still challenges to be addressed, the preclinical and clinical evidence suggests that these inhibitors may significantly improve patient outcomes. Further research is needed to understand the potential of these inhibitors as sarcoma therapeutics and to continue developing more selective and effective agents to meet the clinical needs of sarcoma patients.
- MeSH
- Phosphatidylinositol 3-Kinases * metabolism MeSH
- Phosphoinositide-3 Kinase Inhibitors pharmacology therapeutic use MeSH
- Protein Kinase Inhibitors pharmacology chemistry therapeutic use MeSH
- Humans MeSH
- MTOR Inhibitors pharmacology therapeutic use MeSH
- Antineoplastic Agents * pharmacology chemistry therapeutic use MeSH
- Proto-Oncogene Proteins c-akt * metabolism antagonists & inhibitors MeSH
- Sarcoma * drug therapy metabolism pathology MeSH
- Signal Transduction * drug effects MeSH
- TOR Serine-Threonine Kinases * antagonists & inhibitors metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
In intravenous immunoglobulins (IVIG), and some other immunoglobulin products, protein particles have been implicated in adverse events. Role and mechanisms of immunoglobulin particles in vascular adverse effects of blood components and manufactured biologics have not been elucidated. We have developed a model of spherical silica microparticles (SiMPs) of distinct sizes 200-2000 nm coated with different IVIG- or albumin (HSA)-coronas and investigated their effects on cultured human umbilical vein endothelial cells (HUVEC). IVIG products (1-20 mg/mL), bare SiMPs or SiMPs with IVIG-corona, did not display significant toxicity to unstimulated HUVEC. In contrast, in TNFα-stimulated HUVEC, IVIG-SiMPs induced decrease of HUVEC viability compared to HSA-SiMPs, while no toxicity of soluble IVIG was observed. 200 nm IVIG-SiMPs after 24 h treatment further increased ICAM1 (intercellular adhesion molecule 1) and tissue factor surface expression, apoptosis, mammalian target of rapamacin (mTOR)-dependent activation of autophagy, and release of extracellular vesicles, positive for mitophagy markers. Toxic effects of IVIG-SiMPs were most prominent for 200 nm SiMPs and decreased with larger SiMP size. Using blocking antibodies, toxicity of IVIG-SiMPs was found dependent on FcγRII receptor expression on HUVEC, which increased after TNFα-stimulation. Similar results were observed with different IVIG products and research grade IgG preparations. In conclusion, submicron particles with immunoglobulin corona induced size-dependent toxicity in TNFα-stimulated HUVEC via FcγRII receptors, associated with apoptosis and mTOR-dependent activation of autophagy. Testing of IVIG toxicity in endothelial cells prestimulated with proinflammatory cytokines is relevant to clinical conditions. Our results warrant further studies on endothelial toxicity of sub-visible immunoglobulin particles.
- MeSH
- Apoptosis drug effects MeSH
- Autophagy * drug effects MeSH
- Human Umbilical Vein Endothelial Cells * drug effects metabolism MeSH
- Immunoglobulins, Intravenous * MeSH
- Humans MeSH
- Intercellular Adhesion Molecule-1 metabolism MeSH
- Silicon Dioxide chemistry toxicity MeSH
- Protein Corona metabolism MeSH
- Receptors, IgG * metabolism MeSH
- Tumor Necrosis Factor-alpha * metabolism MeSH
- TOR Serine-Threonine Kinases metabolism MeSH
- Particle Size MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Asi u 25 % pacientů s renálním karcinomem (RCC) dochází k recidivě po radikálním odstranění nádoru. Po několika desetiletích neúspěšných klinických studií jsme se dočkali významného pokroku a nového standardu adjuvantní léčby pacientů s RCC a vyšším rizikem recidivy. Randomizovaná, dvojitě zaslepená studie KEYNOTE-564 prokázala, že pembrolizumab podávaný po dobu 1 roku významně zlepšuje přežití bez rekurence i celkové přežití. Léčba je plně hrazená a je novým standardem v terapii RCC.
Approximately 25% of patients with renal cell carcinoma (RCC) relapse after radical removal of the tumour. After several decades of unsuccessful clinical trials, significant progress has been achieved recently and a new standard of adjuvant treatment for patients with RCC and a higher risk of recurrence has been established. The randomized, double-blind KEYNOTE-564 trial demonstrated that pembrolizumab administered for 1 year after surgery significantly improved both recurrence-free and overall survival. The treatment is fully reimbursed and is the new standard in RCC therapy.
- Keywords
- pembrolizumab,
- MeSH
- Chemotherapy, Adjuvant * methods MeSH
- Survival Analysis MeSH
- Everolimus administration & dosage MeSH
- Immunotherapy methods MeSH
- Tyrosine Kinase Inhibitors therapeutic use MeSH
- Clinical Studies as Topic MeSH
- Humans MeSH
- Kidney Neoplasms * drug therapy therapy MeSH
- Randomized Controlled Trials as Topic MeSH
- Risk MeSH
- Secondary Prevention methods MeSH
- TOR Serine-Threonine Kinases antagonists & inhibitors MeSH
- Check Tag
- Humans MeSH
- Male MeSH
Effective treatment of patients with autism spectrum disorder (ASD) is still absent so far. Taurine exhibits therapeutic effects towards the autism-like behaviour in ASD model animals. Here, we determined the mechanism of taurine effect on hippocampal neurogenesis in genetically inbred BTBR T+ tf/J (BTBR) mice, a proposed model of ASD. In this ASD mouse model, we explored the effect of oral taurine supplementation on ASD-like behaviours in an open field test, elevated plus maze, marble burying test, self-grooming test, and three-chamber test. The mice were divided into four groups of normal controls (WT) and models (BTBR), who did or did not receive 6-week taurine supplementation in water (WT, WT+ Taurine, BTBR, and BTBR+Taurine). Neurogenesis-related effects were determined by Ki67 immunofluorescence staining. Western blot analysis was performed to detect the expression of phosphatase and tensin homologue deleted from chromosome 10 (PTEN)/mTOR/AKT pathway-associated proteins. Our results showed that taurine improved the autism-like behaviour, increased the proliferation of hippocampal cells, promoted PTEN expression, and reduced phosphorylation of mTOR and AKT in hippocampal tissue of the BTBR mice. In conclusion, taurine reduced the autism-like behaviour in partially inherited autism model mice, which may be associa-ted with improving the defective neural precursor cell proliferation and enhancing the PTEN-associated pathway in hippocampal tissue.
- MeSH
- Autistic Disorder * metabolism drug therapy MeSH
- Behavior, Animal drug effects MeSH
- PTEN Phosphohydrolase * metabolism MeSH
- Hippocampus * metabolism drug effects MeSH
- Disease Models, Animal MeSH
- Mice MeSH
- Neurogenesis * drug effects MeSH
- Autism Spectrum Disorder metabolism drug therapy MeSH
- Cell Proliferation drug effects MeSH
- Proto-Oncogene Proteins c-akt * metabolism MeSH
- Signal Transduction * drug effects MeSH
- Taurine * pharmacology MeSH
- TOR Serine-Threonine Kinases * metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
INTRODUCTION: Neural stem cells (NSCs) are essential for both embryonic development and adult neurogenesis, and their dysregulation causes a number of neurodevelopmental disorders, such as epilepsy and autism spectrum disorders. NSC proliferation and differentiation in the developing brain is a complex process controlled by various intrinsic and extrinsic stimuli. The mammalian target of rapamycin (mTOR) regulates proliferation and differentiation, among other cellular functions, and disruption in the mTOR pathway can lead to severe nervous system development deficits. In this study, we investigated the effect of inhibition of the mTOR pathway by rapamycin (Rapa) on NSC proliferation and differentiation. METHODS: The NSC cultures were treated with Rapa for 1, 2, 6, 24, and 48 h. The effect on cellular functions was assessed by immunofluorescence staining, western blotting, and proliferation/metabolic assays. RESULTS: mTOR inhibition suppressed NSC proliferation/metabolic activity as well as S-Phase entry by as early as 1 h of Rapa treatment and this effect persisted up to 48 h of Rapa treatment. In a separate experiment, NSCs were differentiated for 2 weeks after treatment with Rapa for 24 or 48 h. Regarding the effect on neuronal and glial differentiation (2 weeks post-treatment), this was suppressed in NSCs deficient in mTOR signaling, as evidenced by downregulated expression of NeuN, MAP2, and GFAP. We assume that the prolonged effect of mTOR inhibition is realized due to the effect on cytoskeletal proteins. DISCUSSION: Here, we demonstrate for the first time that the mTOR pathway not only regulates NSC proliferation but also plays an important role in NSC differentiation into both neuronal and glial lineages.
- Publication type
- Journal Article MeSH
BACKGROUND: Glioblastoma is a malignant and aggressive type of central nevous system malignancy characterized by many distinct biological features including extensive hypoxia. Hypoxia in glioblatoma associates with complex signaling patterns including activation of several pathways such as MAPK, PI3K-AKT/mTOR and IL-6/JAK/STAT3 with the master regulator HIF-1, which in turn drive particular tumor behaviors determining, in the end, treatment outcomes and patients fate. Thus, the present study was designed to investigate the expression of selected hypoxia related factors including STAT3 in a small set of long-term surviving glioma patients. METHODS: The expression of selected hypoxia related factors including STAT3 was evaluated in a time series of formalin fixed paraffin embedded and cryopreserved glioma samples from repeatedly resected patients. In addition, comparative studies were also conducted on primary glioma cells derived from original patient samples, stabilized glioma cell lines and tumor-xenograft mice model. Obtained data were correlated with clinical findings too. RESULTS: Glioblastoma samples of the analyzed patients displayed heterogeneity in the expression of hypoxia- related and EMT markers with most interesting trend being observed in pSTAT3. This heterogeneity was subsequently confirmed in other employed models (primocultures derived from glioblastoma tissue resections, cryopreserved tumor specimens, stabilized glioblastoma cell line in vitro and in vivo) and concerned, in particular, STAT3 expression which remained stable. In addition, subsequent studies on the role of STAT3 in the context of glioblastoma hypoxia demonstrated opposing effects of its deletion on cell viability as well as the expression of hypoxia and EMT markers. CONCLUSIONS: Our results suport the importance of STAT3 expression and activity in the context of hypoxia in malignant glioblastoma long-term surviving glioma patients while emphasizing heterogeneity of biological outcomes in varying employed tumor models.
- MeSH
- Adult MeSH
- Glioblastoma metabolism pathology genetics MeSH
- Glioma * metabolism pathology genetics MeSH
- Hypoxia metabolism MeSH
- Middle Aged MeSH
- Humans MeSH
- Mice MeSH
- Biomarkers, Tumor metabolism MeSH
- Cell Line, Tumor MeSH
- Brain Neoplasms metabolism pathology genetics MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Aged MeSH
- STAT3 Transcription Factor * metabolism MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Mice MeSH
- Aged MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Defective FAS (CD95/Apo-1/TNFRSF6) signaling causes autoimmune lymphoproliferative syndrome (ALPS). Hypergammaglobulinemia is a common feature in ALPS with FAS mutations (ALPS-FAS), but paradoxically, fewer conventional memory cells differentiate from FAS-expressing germinal center (GC) B cells. Resistance to FAS-induced apoptosis does not explain this phenotype. We tested the hypothesis that defective non-apoptotic FAS signaling may contribute to impaired B cell differentiation in ALPS. We analyzed secondary lymphoid organs of patients with ALPS-FAS and found low numbers of memory B cells, fewer GC B cells, and an expanded extrafollicular (EF) B cell response. Enhanced mTOR activity has been shown to favor EF versus GC fate decision, and we found enhanced PI3K/mTOR and BCR signaling in ALPS-FAS splenic B cells. Modeling initial T-dependent B cell activation with CD40L in vitro, we showed that FAS competent cells with transient FAS ligation showed specifically decreased mTOR axis activation without apoptosis. Mechanistically, transient FAS engagement with involvement of caspase-8 induced nuclear exclusion of PTEN, leading to mTOR inhibition. In addition, FASL-dependent PTEN nuclear exclusion and mTOR modulation were defective in patients with ALPS-FAS. In the early phase of activation, FAS stimulation promoted expression of genes related to GC initiation at the expense of processes related to the EF response. Hence, our data suggest that non-apoptotic FAS signaling acts as molecular switch between EF versus GC fate decisions via regulation of the mTOR axis and transcription. The defect of this modulatory circuit may explain the observed hypergammaglobulinemia and low memory B cell numbers in ALPS.
- MeSH
- Apoptosis genetics MeSH
- Hypergammaglobulinemia * MeSH
- Humans MeSH
- Lymphoproliferative Disorders * genetics MeSH
- TOR Serine-Threonine Kinases MeSH
- Germinal Center MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH