solid-state
Dotaz
Zobrazit nápovědu
sv.
- MeSH
- elektrochemie MeSH
- Publikační typ
- periodika MeSH
- Konspekt
- Chemie. Mineralogické vědy
- NLK Obory
- chemie, klinická chemie
sv.
Nanofluidics is becoming an extensively developing technique in the field of bioanalytical chemistry. Nanoscale hole embed in an insulating membrane is employed in a vast variety of sensing platforms and applications. Although, biological nanopores have several attractive characteristics, in this paper, we focused on the solid-state nanopores due to their advantages as high stability, possibility of diameter control, and ease of surface functionalizing. A detection method, based on the translocation of analyzed molecules through nanochannels under applied voltage bias and resistive pulse sensing, is well established. Nevertheless, it seems that the new detection methods like measuring of transverse electron tunneling using nanogap electrodes or optical detection can offer significant additional advantages. The aim of this review is not to cite all related articles, but highlight the steps, which in our opinion, meant important progresses in solid-state nanopore analysis.
Solid dispersions of active pharmaceutical ingredients are of increasing interest due to their versatile use. In the present study polyvinylpyrrolidone (PVP), poly[N-(2-hydroxypropyl)-metacrylamide] (pHPMA), poly(2-ethyl-2-oxazoline) (PEOx), and polyethylene glycol (PEG), each in three Mw, were used to demonstrate structural diversity of solid dispersions. Acetylsalicylic acid (ASA) was used as a model drug. Four distinct types of the solid dispersions of ASA were created using a freeze-drying method: (i) crystalline solid dispersions containing nanocrystalline ASA in a crystalline PEG matrix; (ii) amorphous glass suspensions with large ASA crystallites embedded in amorphous pHPMA; (iii) solid solutions with molecularly dispersed ASA in rigid amorphous PVP; and (iv) nanoheterogeneous solid solutions/suspensions containing nanosized ASA clusters dispersed in a semiflexible matrix of PEOx. The obtained structural data confirmed that the type of solid dispersion can be primarily controlled by the chemical constitutions of the applied polymers, while the molecular weight of the polymers had no detectable impact. The molecular structure of the prepared dispersions was characterized using solid-state NMR, wide-angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC). By applying various (1)H-(13)C and (1)H-(1)H correlation experiments combined with T1((1)H) and T1ρ((1)H) relaxation data, the extent of the molecular mixing was determined over a wide range of distances, from intimate intermolecular contacts (0.1-0.5 nm) up to the phase-separated nanodomains reaching ca. 500 nm. Hydrogen-bond interactions between ASA and polymers were probed by the analysis of (13)C and (15)N CP/MAS NMR spectra combined with the measurements of (1)H-(15)N dipolar profiles. Overall potentialities and limitations of individual experimental techniques were thoroughly evaluated.
Changes in the protonation state of lyophilized proteins can impact structural integrity, chemical stability, and propensity to aggregate upon reconstitution. When a buffer is chosen, the freezing/drying process may result in dramatic changes in the protonation state of the protein due to ionization shift of the buffer. In order to determine whether protonation shifts are occurring, ionizable probes can be added to the formulation. Optical probes (dyes) have shown dramatic ionization changes in lyophilized products, but it is unclear whether the pH indicator is uniform throughout the matrix and whether the change in the pH indicator actually mirrors drug ionization changes. In solid-state NMR (SSNMR) spectroscopy, the chemical shift of the carbonyl carbon in carboxylic acids is very sensitive to the ionization state of the acid. Therefore, SSNMR can be used to measure ionization changes in a lyophilized matrix by employing a small quantity of an isotopically-labeled carboxylic acid species in the formulation. This paper compares the apparent pH of six trehalose-containing lyophilized buffer systems using SSNMR and UV-Vis diffuse reflectance spectroscopy (UVDRS). Both SSNMR and UVDRS results using two different ionization probes (butyric acid and bromocresol purple, respectively) showed little change in apparent acidity compared to the pre-lyophilized solution in a sodium citrate buffer, but a greater change was observed in potassium phosphate, sodium phosphate, and histidine buffers. While the trends between the two methods were similar, there were differences in the numerical values of equivalent pH (pHeq) observed between the two methods. The potential causes contributing to the differences are discussed.
- MeSH
- fosfáty * chemie MeSH
- histidin * chemie MeSH
- koncentrace vodíkových iontů MeSH
- kyselina citronová chemie MeSH
- lyofilizace * metody MeSH
- magnetická rezonanční spektroskopie * metody MeSH
- pufry MeSH
- spektrofotometrie ultrafialová metody MeSH
- trehalosa * chemie MeSH
- Publikační typ
- časopisecké články MeSH
The potential oil-producing yeast Rhodotorula gracilis was found to produce higher yields of biomass (13.7 g/L) and lipids (20.3%) in a nitrogen-limited and economically cheaper medium (molasses without yeast extract) in a submerged fermentation system. But, when the yeast was grown on four different wheat bran media by solid-state fermentation technique, different media combinations affected the percent increase in biomass, protein, oil production, fatty acid profile and degree of saturation and unsaturation. The initial lipid content in the control medium was 3.5% while in a medium with wheat bran, molasses, and minerals it was 69.8%. The yeast did not produce alpha-amylase, amyloglucosidase and cellulolytic enzymes for the breakdown of wheat bran. The yeast produced red carotenoids, a precursor of vitamin B12 and some oligounsaturated fatty acids in the fermented product.
- MeSH
- biotechnologie MeSH
- fermentace MeSH
- fortifikované potraviny MeSH
- kultivační média MeSH
- lipidy biosyntéza MeSH
- mastné kyseliny metabolismus MeSH
- metabolismus sacharidů MeSH
- mykologie metody MeSH
- oleje metabolismus MeSH
- potravinářská technologie MeSH
- potravní vláknina metabolismus MeSH
- Rhodotorula růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
A new approach for testing drug sensitivity to autooxidative degradation in the solid state is demonstrated in this work. A novel solid-state form of stressing agent for autooxidation has been proposed, based on azobisisobutyronitrile loaded into mesoporous silica carrier particles. The new solid-state form of the stressing agent was applied in degradation studies of two active pharmaceutical ingredients: bisoprolol and abiraterone acetate. The effectiveness and predictivity of the method were evaluated by comparing impurity profiles with those obtained by traditional stability testing of commercial tablets containing the investigated APIs. The results obtained by the new solid-state stressor were also compared with those obtained by an existing method for testing peroxide oxidative degradation in the solid state using a complex of polyvinylpyrrolidone with hydrogen peroxide. It was found that the new silica particle-based stressor was able to effectively predict which impurities could be formed by autooxidation in tablets and that this new approach is complementary to methods for testing peroxide oxidative degradation known from the literature.
- MeSH
- oxid křemičitý * MeSH
- oxidační stres MeSH
- peroxidy * MeSH
- tablety MeSH
- Publikační typ
- časopisecké články MeSH
Rapid determination of selected gross alpha and beta emitters in environmental matrices by solid-state scintillation technique is discussed. This method is based on sample treatment using microwave reactor and direct measurement of digested products using powder scintillator and alkaline solution as a substitute for traditional liquid scintillation cocktail. The selected group of radionuclides was chosen with respect to their use in nuclear industry, high radiotoxicity, and the possibility of potential misuse. The work aimed at verifying the connection of microwave decomposition using alkaline solution with solid-state scintillation using a powder scintillator YAP:Ce together with an alkaline medium.