spatial normalization
Dotaz
Zobrazit nápovědu
Spatial navigation (SN) impairment is present early in Alzheimer's disease (AD). We tested whether SN performance, self-centered (egocentric) and world-centered (allocentric), was distinguishable from performance on established cognitive functions-verbal and nonverbal memory, executive and visuospatial function, attention/working memory, and language function. 108 older adults (53 cognitively normal [CN] and 55 with amnestic mild cognitive impairment [aMCI]) underwent neuropsychological examination and real-space navigation testing. Subset (n = 63) had automated hippocampal volumetry. In a factor analysis, allocentric and egocentric navigation tasks loaded highly onto the same factor with low loadings on other factors comprising other cognitive functions. In linear regression, performance on other cognitive functions was not, or was only marginally, associated with spatial navigation performance in CN or aMCI groups. After adjustment for age, gender, and education, right hippocampal volume explained 26% of the variance in allocentric navigation in aMCI group. In conclusion, spatial navigation, a known cognitive marker of early AD, may be distinguished from other cognitive functions. Therefore, its assessment along with other major cognitive functions may be highly beneficial in terms of obtaining a comprehensive neuropsychological profile.
- MeSH
- hipokampus diagnostické zobrazování patologie MeSH
- kognice fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- paměť fyziologie MeSH
- prostorová navigace fyziologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- stárnutí patologie psychologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Extremely low-frequency magnetic field (ELF-MF) has been suggested to influence the cognitive capability but this should be dynamically evaluated in a longitudinal study. Previous training can affect performance, but the influence under magnetic field is unclear. This study aims to evaluate the effects of previous training and ELF-MF exposure on learning and memory using the Morris water maze (MWM). Sprague-Dawley rats were subjected to MWM training, ELF-MF exposure (50 Hz, 100 microT), or ELF-MF exposure combined with MWM training for 90 days. Normal rats were used as controls. The MWM was used to test. The data show that the rats exposed to training and ELF-MF with training performed better on spatial acquisition when re-tested. However, during the probe trial the rats showed no change between the training phase and the test phase. Compared with the control group, the ELF-MF group showed no significant differences. These results confirm that previous training can improve the learning and memory capabilities regarding spatial acquisition in the MWM and this effect can last for at least 90 days. However, this improvement in learning and memory capabilities was not observed during the probe trial. Furthermore, ELF-MF exposure did not interfere with the improvement in learning and memory capabilities.
- MeSH
- bludiště - učení * MeSH
- magnetické pole * MeSH
- potkani Sprague-Dawley MeSH
- prostorová paměť * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies frequently applied the spatial normalization on fMRI time series before the calculation of temporal features (here referred to as "Prenorm"). We hypothesized that calculating the rs-fMRI features, for example, functional connectivity (FC), regional homogeneity (ReHo), or amplitude of low-frequency fluctuation (ALFF) in individual space, before the spatial normalization (referred to as "Postnorm") can be an improvement to avoid artifacts and increase the results' reliability. We utilized two datasets: (1) simulated images where temporal signal-to-noise ratio (tSNR) is kept a constant and (2) an empirical fMRI dataset with 50 healthy young subjects. For simulated images, the tSNR is constant as generated in individual space but increased after Prenorm and intersubject variability of tSNR was induced. In contrast, tSNR was kept constant after Postnorm. Consistently, for empirical images, higher tSNR, ReHo, and FC (default mode network, seed in precuneus) and lower ALFF were found after Prenorm compared to those of Postnorm. Coefficient of variability of tSNR and ALFF was higher after Prenorm compared to those of Postnorm. Moreover, the significant correlation was found between simulated tSNR after Prenorm and empirical tSNR, ALFF, and ReHo after Prenorm, indicating algorithmic variation in empirical rs-fMRI features. Furthermore, comparing to Prenorm, ALFF and ReHo showed higher intraclass correlation coefficients between two serial scans after Postnorm. Our results indicated that Prenorm may induce algorithmic intersubject variability on tSNR and reduce its reliability, which also significantly affected ALFF and ReHo. We suggest using Postnorm instead of Prenorm for future rs-fMRI studies using ALFF/ReHo.
- Publikační typ
- časopisecké články MeSH
Hippocampal and basal forebrain (BF) atrophy is associated with allocentric navigation impairment in Alzheimer's disease (AD) and may lead to recruitment of compensatory navigation strategies. We examined navigation strategy preference, its association with allocentric navigation, and the role of hippocampal and BF volumes in this association in early clinical stages of AD. Sixty nine participants-amnestic mild cognitive impairment (aMCI) due to AD (n = 28), AD dementia (n = 21), and cognitively normal (CN) older adults (n = 20)-underwent virtual Y-maze strategy assessment, real-space navigation testing, cognitive assessment, and hippocampal and BF volumetry. Preference for egocentric over allocentric strategy increased with AD severity (aMCI: 67% vs. 33%; dementia: 94% vs. 6%), which contrasted with preference in the CN group (39% vs. 61%). Those with aMCI who preferred egocentric strategy had worse allocentric navigation. Among those with aMCI, hippocampal and BF atrophy explained up to 25% of the association between strategy preference and allocentric navigation. The preference for egocentric strategy in AD may reflect recruitment of compensatory extrahippocampal navigation strategies as adaptation to hippocampal and BF neurodegeneration.
- MeSH
- Alzheimerova nemoc patologie psychologie MeSH
- atrofie MeSH
- bludiště - učení MeSH
- degenerace nervu MeSH
- hipokampus patologie patofyziologie MeSH
- kognitivní dysfunkce patologie psychologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- neuropsychologické testy MeSH
- pars basalis telencephali patologie patofyziologie MeSH
- prostorová navigace fyziologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- stupeň závažnosti nemoci MeSH
- velikost orgánu MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The analysis of functional magnetic resonance imaging (fMRI) data involves multiple stages of data pre-processing before the activation can be statistically detected. Spatial smoothing is a very common pre-processing step in the analysis of functional brain imaging data. This study presents a broad perspective on the influence of spatial smoothing on fMRI group activation results. The data obtained from 20 volunteers during a visual oddball task were used for this study. Spatial smoothing using an isotropic gaussian filter kernel with full width at half maximum (FWHM) sizes 2 to 30 mm with a step of 2 mm was applied in two levels - smoothing of fMRI data and/or smoothing of single-subject contrast files prior to general linear model random-effects group analysis generating statistical parametric maps. Five regions of interest were defined, and several parameters (coordinates of nearest local maxima, t value, corrected threshold, effect size, residual values, etc.) were evaluated to examine the effects of spatial smoothing. The optimal filter size for group analysis is discussed according to various criteria. For our experiment, the optimal FWHM is about 8 mm. We can conclude that for robust experiments and an adequate number of subjects in the study, the optimal FWHM for single-subject inference is similar to that for group inference (about 8 mm, according to spatial resolution). For less robust experiments and fewer subjects in the study, a higher FWHM would be optimal for group inference than for single-subject inferences.
- MeSH
- algoritmy MeSH
- artefakty MeSH
- design vybavení MeSH
- dospělí MeSH
- financování organizované MeSH
- kontrastní látky MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mapování mozku metody přístrojové vybavení MeSH
- mozek patologie MeSH
- normální rozdělení MeSH
- počítačové zpracování obrazu MeSH
- reprodukovatelnost výsledků MeSH
- statistické modely MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
BACKGROUND: Subjective cognitive decline (SCD) may serve as a symptomatic indicator for preclinical Alzheimer's disease; however, SCD is a heterogeneous entity regarding clinical progression. We aimed to investigate whether spatial navigation could reveal subcortical structural alterations and the risk of progression to objective cognitive impairment in SCD individuals. METHODS: One hundred and eighty participants were enrolled: those with SCD (n = 80), normal controls (NCs, n = 77), and mild cognitive impairment (MCI, n = 23). SCD participants were further divided into the SCD-good (G-SCD, n = 40) group and the SCD-bad (B-SCD, n = 40) group according to their spatial navigation performance. Volumes of subcortical structures were calculated and compared among the four groups, including basal forebrain, thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens. Topological properties of the subcortical structural covariance network were also calculated. With an interval of 1.5 years ± 12 months of follow-up, the progression rate to MCI was compared between the G-SCD and B-SCD groups. RESULTS: Volumes of the basal forebrain, the right hippocampus, and their respective subfields differed significantly among the four groups (p < 0.05, false discovery rate corrected). The B-SCD group showed lower volumes in the basal forebrain than the G-SCD group, especially in the Ch4p and Ch4a-i subfields. Furthermore, the structural covariance network of the basal forebrain and right hippocampal subfields showed that the B-SCD group had a larger Lambda than the G-SCD group, which suggested weakened network integration in the B-SCD group. At follow-up, the B-SCD group had a significantly higher conversion rate to MCI than the G-SCD group. CONCLUSION: Compared to SCD participants with good spatial navigation performance, SCD participants with bad performance showed lower volumes in the basal forebrain, a reorganized structural covariance network of subcortical nuclei, and an increased risk of progression to MCI. Our findings indicated that spatial navigation may have great potential to identify SCD subjects at higher risk of clinical progression, which may contribute to making more precise clinical decisions for SCD individuals who seek medical help.
Brain dynamics and the associations with spatial navigation in individuals with subjective cognitive decline (SCD) remain unknown. In this study, a hidden Markov model (HMM) was inferred from resting-state functional magnetic resonance imaging data in a cohort of 80 SCD and 77 normal control (NC) participants. By HMM, 12 states with distinct brain activity were identified. The SCD group showed increased fractional occupancy in the states with less activated ventral default mode, posterior salience, and visuospatial networks, while decreased fractional occupancy in the state with general network activation. The SCD group also showed decreased probabilities of transition into and out of the state with general network activation, suggesting an inability to dynamically upregulate and downregulate brain network activity. Significant correlations between brain dynamics and spatial navigation were observed. The combined features of spatial navigation and brain dynamics showed an area under the curve of 0.854 in distinguishing between SCD and NC. The findings may provide exploratory evidence of the reconfiguration of brain network dynamics underlying spatial deficits in SCD.
Lurcher mutant mice of the C3H strain provide a model of both cerebellar and retinal degeneration. Therefore, they enable the study of the behavior of cerebellar mutants under disabled visual orientation conditions. We aimed to examine cerebellar Lurcher mutants and wild type mice with intact cerebella with and without retinal degeneration employing the rotarod and Morris water maze tests. The positions of the hidden platform and the starting point in the water maze test were stable so as to enable the use of both idiothetic navigation and visual inputs. The Lurcher mice evinced approximately 90 % shorter fall latencies on the rotarod than did the wild type mice. Retinal degeneration exerted no impact on motor performance. Only the wild type mice with normal retina were able to find the water maze platform efficiently. The wild type mice with retinal degeneration developed immobility (almost 25 % of the time) as a sign of behavioral despair. The Lurchers maintained high swimming activity as a potential manifestation of stress-induced behavioral disinhibition and their spatial performance was related to motor skills and swim speed. We demonstrated that both motor deficit and pathological behavior have the potential to contribute to abnormal performance in spatial tasks. Thus, spatial disability in cerebellar mutants is most likely a complex consequence of multiple disturbances related to cerebellar dysfunction.
- MeSH
- bludiště - učení fyziologie MeSH
- degenerace retiny genetika patologie MeSH
- motorické dovednosti fyziologie MeSH
- mozeček patologie MeSH
- myši - mutanty neurologické MeSH
- myši inbrední C3H MeSH
- myši MeSH
- neurodegenerativní nemoci genetika patologie MeSH
- slepota genetika patologie MeSH
- vnímání prostoru fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The intraocular lens contains high levels of both cholesterol and sphingolipids, which are believed to be functionally important for normal lens physiology. The aim of this study was to explore the spatial distribution of sphingolipids in the ocular lens using mass spectrometry imaging (MSI). Matrix-assisted laser desorption/ionization (MALDI) imaging with ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to visualize the lipid spatial distribution. Equatorially-cryosectioned, 12 microm thick slices of tissue were thaw-mounted to an indium-tin oxide (ITO) glass slide by soft-landing to an ethanol layer. This procedure maintained the tissue integrity. After the automated MALDI matrix deposition, the entire lens section was examined by MALDI MSI in a 150 microm raster. We obtained spatial- and concentration-dependent distributions of seven lens sphingomyelins (SM) and two ceramide-1-phosphates (CerP), which are important lipid second messengers. Glycosylated sphingolipids or sphingolipid breakdown products were not observed. Owing to ultra high resolution MS, all lipids were identified with high confidence, and distinct distribution patterns for each of them are presented. The distribution patterns of SMs provide an understanding of the physiological functioning of these lipids in clear lenses and offer a novel pathophysiological means for understanding diseases of the lens.
- MeSH
- Fourierova analýza MeSH
- metabolismus lipidů MeSH
- metody pro přípravu analytických vzorků MeSH
- molekulární zobrazování metody MeSH
- oční čočka metabolismus MeSH
- prasata MeSH
- sfingolipidy metabolismus MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH