surface loops
Dotaz
Zobrazit nápovědu
Engineering enzyme catalytic properties is important for basic research as well as for biotechnological applications. We have previously shown that the reshaping of enzyme access tunnels via the deletion of a short surface loop element may yield a haloalkane dehalogenase variant with markedly modified substrate specificity and enantioselectivity. Here, we conversely probed the effects of surface loop-helix transplantation from one enzyme to another within the enzyme family of haloalkane dehalogenases. Precisely, we transplanted a nine-residue long extension of L9 loop and α4 helix from DbjA into the corresponding site of DbeA. Biophysical characterization showed that this fragment transplantation did not affect the overall protein fold or oligomeric state, but lowered protein stability (ΔTm = -5 to 6 °C). Interestingly, the crystal structure of DbeA mutant revealed the unique structural features of enzyme access tunnels, which are known determinants of catalytic properties for this enzyme family. Biochemical data confirmed that insertion increased activity of DbeA with various halogenated substrates and altered its enantioselectivity with several linear β-bromoalkanes. Our findings support a protein engineering strategy employing surface loop-helix transplantation for construction of novel protein catalysts with modified catalytic properties.
- Publikační typ
- časopisecké články MeSH
A set of single-tryptophan mutants of the Na(+)/K(+)-ATPase isolated, large cytoplasmic loop connecting transmembrane helices M4 and M5 (C45) was prepared to monitor effects of the natural cytoplasmic ligands (i.e., Mg(2+) and/or ATP) binding. We introduced a novel method for the monitoring of the changes in the electrostatic surface potential (ESP) induced by ligand binding, using the quenching of the intrinsic tryptophan fluorescence by acrylamide or iodide. This approach opens a new way to understanding the interactions within the proteins. Our experiments revealed that the C45 conformation in the presence of the ATP (without magnesium) substantially differed from the conformation in the presence of Mg(2+) or MgATP or in the absence of any ligand not only in the sense of geometry but also in the sense of the ESP. Notably, the set of ESP-sensitive residues was different from the set of geometry-sensitive residues. Moreover, our data indicate that the effect of the ligand binding is not restricted only to the close environment of the binding site and that the information is in fact transmitted also to the distal parts of the molecule. This property could be important for the communication between the cytoplasmic headpiece and the cation binding sites located within the transmembrane domain.
- MeSH
- adenosintrifosfát farmakologie metabolismus MeSH
- akrylamidy farmakologie metabolismus MeSH
- cytoplazma metabolismus MeSH
- fluorescence MeSH
- hořčík farmakologie metabolismus MeSH
- jodidy farmakologie metabolismus MeSH
- konformace proteinů účinky léků MeSH
- ligandy MeSH
- molekulární modely MeSH
- mutace MeSH
- myši MeSH
- povrchové vlastnosti MeSH
- sodíko-draslíková ATPasa genetika chemie metabolismus MeSH
- statická elektřina MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
- MeSH
- farmakoterapie metody MeSH
- Henleova klička metabolismus MeSH
- homeostáza fyziologie genetika MeSH
- hyperkalciurie diagnóza metabolismus terapie MeSH
- lidé MeSH
- membránové proteiny analýza genetika nedostatek MeSH
- mezibuněčné spoje fyziologie genetika metabolismus MeSH
- minerály analýza metabolismus MeSH
- mutace genetika MeSH
- nedostatek hořčíku diagnóza komplikace terapie MeSH
- nefrokalcinóza diagnóza metabolismus terapie MeSH
- renální insuficience etiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Subgroup J avian leukosis virus (ALV-J) is unique among the avian sarcoma and leukosis viruses in using the multimembrane-spanning cell surface protein Na(+)/H(+) exchanger type 1 (NHE1) as a receptor. The precise localization of amino acids critical for NHE1 receptor activity is key in understanding the virus-receptor interaction and potential interference with virus entry. Because no resistant chicken lines have been described until now, we compared the NHE1 amino acid sequences from permissive and resistant galliform species. In all resistant species, the deletion or substitution of W38 within the first extracellular loop was observed either alone or in the presence of other incidental amino acid changes. Using the ectopic expression of wild-type or mutated chicken NHE1 in resistant cells and infection with a reporter recombinant retrovirus of subgroup J specificity, we studied the effect of individual mutations on the NHE1 receptor capacity. We suggest that the absence of W38 abrogates binding of the subgroup J envelope glycoprotein to ALV-J-resistant cells. Altogether, we describe the functional importance of W38 for virus entry and conclude that natural polymorphisms in NHE1 can be a source of host resistance to ALV-J.
- MeSH
- internalizace viru * MeSH
- mutační analýza DNA MeSH
- Na(+)-H(+) antiport genetika metabolismus MeSH
- ptáci MeSH
- tropismus virů * MeSH
- tryptofan genetika metabolismus MeSH
- virové receptory genetika metabolismus MeSH
- virus ptačí leukózy fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The sesquiterpenoid juvenile hormone (JH) is vital to insect development and reproduction. Intracellular JH receptors have recently been established as basic helix-loop-helix transcription factor (bHLH)/PAS proteins in Drosophila melanogaster known as germ cell-expressed (Gce) and its duplicate paralog, methoprene-tolerant (Met). Upon binding JH, Gce/Met activates its target genes. Insects possess multiple native JH homologs whose molecular activities remain unexplored, and diverse synthetic compounds including insecticides exert JH-like effects. How the JH receptor recognizes its ligands is unknown. To determine which structural features define an active JH receptor agonist, we tested several native JHs and their nonnative geometric and optical isomers for the ability to bind the Drosophila JH receptor Gce, to induce Gce-dependent transcription, and to affect the development of the fly. Our results revealed high ligand stereoselectivity of the receptor. The geometry of the JH skeleton, dictated by two stereogenic double bonds, was the most critical feature followed by the presence of an epoxide moiety at a terminal position. The optical isomerism at carbon C11 proved less important even though Gce preferentially bound a natural JH enantiomer. The results of receptor-ligand-binding and cell-based gene activation assays tightly correlated with the ability of different geometric JH isomers to induce gene expression and morphogenetic effects in the developing insects. Molecular modeling supported the requirement for the proper double-bond geometry of JH, which appears to be its major selective mechanism. The strict stereoselectivity of Gce toward the natural hormone contrasts with the high potency of synthetic Gce agonists of disparate chemistries.
- MeSH
- Drosophila melanogaster chemie genetika metabolismus MeSH
- juvenilní hormony chemie metabolismus MeSH
- molekulární modely MeSH
- proteiny Drosophily metabolismus MeSH
- receptory buněčného povrchu metabolismus MeSH
- stereoizomerie MeSH
- transkripční faktory bHLH metabolismus MeSH
- transkripční faktory metabolismus MeSH
- vazba proteinů MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Multistep phosphorelay (MSP) cascades mediate responses to a wide spectrum of stimuli, including plant hormonal signaling, but several aspects of MSP await elucidation. Here, we provide first insight into the key step of MSP-mediated phosphotransfer in a eukaryotic system, the phosphorylation of the receiver domain of the histidine kinase CYTOKININ-INDEPENDENT 1 (CKI1RD) from Arabidopsis thaliana We observed that the crystal structures of free, Mg2+-bound, and beryllofluoridated CKI1RD (a stable analogue of the labile phosphorylated form) were identical and similar to the active state of receiver domains of bacterial response regulators. However, the three CKI1RD variants exhibited different conformational dynamics in solution. NMR studies revealed that Mg2+ binding and beryllofluoridation alter the conformational equilibrium of the β3-α3 loop close to the phosphorylation site. Mutations that perturbed the conformational behavior of the β3-α3 loop while keeping the active-site aspartate intact resulted in suppression of CKI1 function. Mechanistically, homology modeling indicated that the β3-α3 loop directly interacts with the ATP-binding site of the CKI1 histidine kinase domain. The functional relevance of the conformational dynamics observed in the β3-α3 loop of CKI1RD was supported by a comparison with another A. thaliana histidine kinase, ETR1. In contrast to the highly dynamic β3-α3 loop of CKI1RD, the corresponding loop of the ETR1 receiver domain (ETR1RD) exhibited little conformational exchange and adopted a different orientation in crystals. Biochemical data indicated that ETR1RD is involved in phosphorylation-independent signaling, implying a direct link between conformational behavior and the ability of eukaryotic receiver domains to participate in MSP.
- MeSH
- Arabidopsis enzymologie genetika MeSH
- krystalografie rentgenová MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- proteinkinasy chemie genetika MeSH
- proteinové domény MeSH
- proteiny huseníčku chemie genetika MeSH
- receptory buněčného povrchu chemie genetika MeSH
- sekundární struktura proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The fine tuning of hormone (e.g., auxin and gibberellin) levels and hormone signaling is required for maintaining normal embryogenesis. Embryo polarity, for example, is ensured by the directional movement of auxin that is controlled by various types of auxin transporters. Here, we present pieces of evidence for the auxin-gibberellic acid (GA) hormonal crosstalk during embryo development and the regulatory role of the Arabidopsis thaliana Calcium-Dependent Protein Kinase-Related Kinase 5 (AtCRK5) in this regard. It is pointed out that the embryogenesis of the Atcrk5-1 mutant is delayed in comparison to the wild type. This delay is accompanied with a decrease in the levels of GA and auxin, as well as the abundance of the polar auxin transport (PAT) proteins PIN1, PIN4, and PIN7 in the mutant embryos. We have previously showed that AtCRK5 can regulate the PIN2 and PIN3 proteins either directly by phosphorylation or indirectly affecting the GA level during the root gravitropic and hypocotyl hook bending responses. In this manuscript, we provide evidence that the AtCRK5 protein kinase can in vitro phosphorylate the hydrophilic loops of additional PIN proteins that are important for embryogenesis. We propose that AtCRK5 can govern embryo development in Arabidopsis through the fine tuning of auxin-GA level and the accumulation of certain polar auxin transport proteins.
- MeSH
- Arabidopsis růst a vývoj metabolismus MeSH
- ELISA MeSH
- gibereliny analýza metabolismus MeSH
- klíčení * MeSH
- kyseliny indoloctové metabolismus MeSH
- membránové transportní proteiny genetika metabolismus MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- receptory buněčného povrchu metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- semena rostlinná anatomie a histologie růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
The SUN family is comprised of proteins that are conserved among various yeasts and fungi, but that are absent in mammals and plants. Although the function(s) of these proteins are mostly unknown, they have been linked to various, often unrelated cellular processes such as those connected to mitochondrial and cell wall functions. Here we show that three of the four Saccharomyces cerevisiae SUN family proteins, Uth1p, Sim1p and Sun4p, are efficiently secreted out of the cells in different growth phases and their production is affected by the level of oxygen. The Uth1p, Sim1p, Sun4p and Nca3p are mostly synthesized during the growth phase of both yeast liquid cultures and colonies. Culture transition to slow-growing or stationary phases is linked with a decreased cellular concentration of Sim1p and Sun4p and with their efficient release from the cells. In contrast, Uth1p is released mainly from growing cells. The synthesis of Uth1p and Sim1p, but not of Sun4p, is repressed by anoxia. All four proteins confer cell sensitivity to zymolyase. In addition, Uth1p affects cell sensitivity to compounds influencing cell wall composition and integrity (such as Calcofluor white and Congo red) differently when growing on fermentative versus respiratory carbon sources. In contrast, Uth1p is essential for cell resistance to boric acids irrespective of carbon source. In summary, our novel findings support the hypothesis that SUN family proteins are involved in the remodeling of the yeast cell wall during the various phases of yeast culture development and under various environmental conditions. The finding that Uth1p is involved in cell sensitivity to boric acid, i.e. to a compound that is commonly used as an important antifungal in mycoses, opens up new possibilities of investigating the mechanisms of boric acid's action.
- MeSH
- benzensulfonáty metabolismus farmakologie MeSH
- buněčná stěna metabolismus MeSH
- extracelulární prostor metabolismus MeSH
- glukosidasy genetika metabolismus sekrece MeSH
- intracelulární prostor metabolismus MeSH
- kyseliny borité metabolismus farmakologie MeSH
- membránové proteiny genetika metabolismus sekrece MeSH
- mitochondriální proteiny genetika metabolismus sekrece MeSH
- proteiny teplotního šoku genetika metabolismus sekrece MeSH
- regulace genové exprese u hub MeSH
- represorové proteiny genetika metabolismus sekrece MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus sekrece MeSH
- Saccharomyces cerevisiae účinky léků genetika růst a vývoj metabolismus MeSH
- spotřeba kyslíku * MeSH
- transkripční faktory bHLH genetika metabolismus sekrece MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH