time-regulated release
Dotaz
Zobrazit nápovědu
Nickel-titanium alloys have been used in medical applications for several years; however, biocompatibility of the material remains controversial. In the present study, the human umbilical vein endothelial cells (HUVEC) were cultured in contact with the nitinol used in two different heat treatment surface modifications-helium and hydrogen. The amount of Ni ions released from these alloys in contact with HUVEC was measured in media and in the cells by ICP-MS. An increased release of Ni ions was detected in He alloy compared with H2 alloy modification with an elevation with the metal exposition duration (24 h vs. 72 h). The cells contained the Ni ions in both selected alloy modifications with the lower levels in H2 alloys. To evaluate the potential of multiple metal applications, similar values were observed in media and in cell suspension for all surface modification combinations. The model analysis of effect of metal ion release on distant cells in the body showed that the concentration is interestingly similar to concentrations in cells in direct contact with the metal alloy. The cells are able to regulate the concentration of Ni ions within the cell. According to our best knowledge, the study for the first time describes the presence of Ni ions released from nitinol directly in the cells. In the case of the H2 modification, the lowest levels of Ni ions were detected both in medium and in the cells, which likely increases the biocompatibility of the nitinol alloy.
In vitro dissolution testing is commonly performed to ensure that oral solid dosage medicines are of high quality and will achieve their targeted in vivo performance. However, this testing is time and material consuming. Therefore, pharmaceutical companies have been developing predictive dissolution models (PDMs) for drug product release based on fast at- and/or on-line measurements, including real-time release testing of dissolution (RTRT-D). Recently, PDMs have seen acceptance by major regulatory bodies as release tests for the dissolution critical quality attribute. In this paper, several methodologies are described to develop and validate a fit-for-purpose model, then to implement it as a surrogate release test for dissolution. These approaches are further exemplified by real-life case studies, which demonstrate that PDMs for release are not only viable but more sustainable than in vitro dissolution testing and can significantly accelerate drug product release. The rise of continuous manufacturing within the pharmaceutical industry further favors the implementation of real-time release testing. Therefore, a steep uptake of PDMs for release is expected once this methodology is globally accepted. To that end, it is advantageous for global regulators and pharmaceutical innovators to coalesce around a harmonized set of expectations for development, validation, implementation, and lifecycle of PDMs as part of drug product release testing.
- MeSH
- aplikace orální MeSH
- farmaceutická chemie metody MeSH
- léčivé přípravky chemie aplikace a dávkování MeSH
- lidé MeSH
- příprava léků MeSH
- rozpustnost MeSH
- schvalování léčiv MeSH
- uvolňování léčiv * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This review is focused on the basic principles of the delivery systems with a pulsatile release pattern. Such systems are designed according to the circadian rhythm of the body. Time-controlled, stimuli-induced and externally regulated pulsatile drug delivery systems are recognized. The drug release of time-controlled systems occurs after a predefined time lag. Stimuli-induced systems release the drug as a reaction to changeable conditions in the body (pH, glucose level). The drug release of externally regulated systems is controlled via external stimulus (magnetism, ultrasound). Pulsatile drug delivery systems rank among modern dosage forms which provide many therapeutic benefits.
Hypothalamic Adult Neurogenesis (hAN) has been implicated in regulating energy homeostasis. Adult-generated neurons and adult Neural Stem Cells (aNSCs) in the hypothalamus control food intake and body weight. Conversely, diet-induced obesity (DIO) by high fat diets (HFD) exerts adverse influence on hAN. However, the effects of anti-obesity compounds on hAN are not known. To address this, we administered a lipidized analogue of an anti-obesity neuropeptide, Prolactin Releasing Peptide (PrRP), so-called LiPR, to mice. In the HFD context, LiPR rescued the survival of adult-born hypothalamic neurons and increased the number of aNSCs by reducing their activation. LiPR also rescued the reduction of immature hippocampal neurons and modulated calcium dynamics in iPSC-derived human neurons. In addition, some of these neurogenic effects were exerted by another anti-obesity compound, Liraglutide. These results show for the first time that anti-obesity neuropeptides influence adult neurogenesis and suggest that the neurogenic process can serve as a target of anti-obesity pharmacotherapy.
Stress-induced expression of immediate early genes (IEGs) appears to be transient even if the exposure to the stressor persists. However, there are some exceptions which suggest that particular characteristics of stressors can affect the dynamics of IEG expression. We studied in selected telencephalic, diencephalic and brainstem regions the mRNA levels of two clearly distinct IEGs (c-fos and arc) during prolonged exposure to a severe stressor such as immobilization (IMO) and after releasing the rats from the situation. Although regional differences were observed with the two IEGs, overall, c-fos mRNA levels progressively declined over the course of 4 h of continuous exposure to IMO, whereas arc mRNA levels were maintained at high levels in the brain regions that express this gene under stress (telencephalon). Levels of CRF hnRNA in the hypothalamus paraventricular nucleus only slightly declined during prolonged exposure to IMO. Surprisingly, termination of exposure to IMO did not modify CRF gene expression in the paraventricular nucleus or the pattern of IEGs expression, with the exception of c-fos in the lateral septum. Thus, putative signals associated to the termination of exposure to IMO were unable to modify either IEG expression in most brain areas or CRF gene expression in the paraventricular nucleus.
- MeSH
- časové faktory MeSH
- cytoskeletální proteiny genetika metabolismus MeSH
- financování organizované MeSH
- fyzické omezení metody MeSH
- hormon uvolňující kortikotropin genetika metabolismus MeSH
- hybridizace in situ metody MeSH
- krysa rodu rattus MeSH
- mozek metabolismus MeSH
- nelineární dynamika MeSH
- potkani Sprague-Dawley MeSH
- proteiny nervové tkáně genetika metabolismus MeSH
- protoonkogenní proteiny c-fos genetika metabolismus MeSH
- psychický stres etiologie metabolismus patologie MeSH
- regulace genové exprese fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
Epithelial cells represent an important source of cytokines that may modulate the influx and functions of mononuclear phagocytes. The aim of our study was to characterize changes in the gene expression of selected cytokines in human macrophages co-cultured with respiratory epithelial cells. The A549 alveolar type II-like cell line was co-cultured with THP-1 cells (monocyte/macrophage cell line) in filter-separated mode to avoid their cell-cell contact. At different time-points (0, 4, 8, 12 and 24 h), the cells were harvested separately to evaluate their gene and protein expression (IL-1 beta, IL-6, IL-8, IL-10 and GM-CSF). Quantitative RT-PCR analysis showed prominent changes in the THP-1 cytokine gene expression induced by a co-culture with A549 cells. Fourfold upregulation of mRNA expression has been found in 12 genes and 4-fold downregulation in 5 genes as compared to the unstimulated control sample with a p value smaller than 0.05. The induction of inhibin beta A and IL-1 beta mRNA after 12 h and the expression of IL-1 alpha and GM-CSF mRNA after 24 h were the most prominent. When looking at the cytokine levels in culture supernatants, IL-1 beta and IL-8 were induced early (at 8 h) as compared to the release of IL-6 and GM-CSF (at 24 h). We conclude that respiratory epithelial cells constitutively regulate the cytokine gene expression of macrophages located in their environment and might further modulate the release of cytokines by posttranslational pathways.
- MeSH
- buněčné linie MeSH
- časové faktory MeSH
- cytokiny biosyntéza imunologie MeSH
- epitelové buňky cytologie imunologie metabolismus MeSH
- kokultivační techniky MeSH
- lidé MeSH
- messenger RNA biosyntéza imunologie MeSH
- monocyty cytologie imunologie metabolismus MeSH
- regulace genové exprese imunologie MeSH
- stanovení celkové genové exprese MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this study we compared the proteomes of macrophages and heterophils isolated from the spleen 4 days after intravenous infection of chickens with Salmonella Enteritidis. Heterophils were characterized by expression of MMP9, MRP126, LECT2, CATHL1, CATHL2, CATHL3, LYG2, LYZ and RSFR. Macrophages specifically expressed receptor proteins, e.g. MRC1L, LRP1, LGALS1, LRPAP1 and a DMBT1L. Following infection, heterophils decreased ALB and FN1, and released MMP9 to enable their translocation to the site of infection. In addition, the endoplasmic reticulum proteins increased in heterophils which resulted in the release of granular proteins. Since transcription of genes encoding granular proteins did not decrease, these genes remained continuously transcribed and translated even after initial degranulation. Macrophages increased amounts of fatty acid elongation pathway proteins, lysosomal and phagosomal proteins. Macrophages were less responsive to acute infection than heterophils and an increase in proteins like CATHL1, CATHL2, RSFR, LECT2 and GAL1 in the absence of any change in their expression at RNA level could even be explained by capturing these proteins from the external environment into which these could have been released by heterophils.
- MeSH
- kur domácí metabolismus mikrobiologie MeSH
- kvantitativní polymerázová řetězová reakce veterinární MeSH
- makrofágy metabolismus MeSH
- nemoci drůbeže metabolismus mikrobiologie MeSH
- proteom MeSH
- protilátky heterofilní metabolismus MeSH
- průtoková cytometrie veterinární MeSH
- regulace genové exprese MeSH
- Salmonella enteritidis * MeSH
- salmonelová infekce u zvířat metabolismus mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Mechanisms and pathways responsible for cytotoxicity of sulforaphane (SF) in colon cancer cells with deleted p53 were investigated during 48 h of exposure. SF showed dose-dependent cytotoxicity and proapoptotic activity in the present model. In addition, in HCT-116 p53KO cells SF induced DNA damage with the subsequent cellular response and signaling not including p53 and caspase-2 pathways. Conversely, in SF-treated cells JNK was activated which led to an early lysosomal membrane permeabilization, release of cathepsin B and D and activation of Bid by specific cleavage. Concomitantly, the expression of Bax increased in the presence of JNK-mediated Bcl-2 inhibition which was followed by mitochondrial release of cytochrome c and activation of apoptosis. These results suggest that SF may be useful as a chemopreventive agent in colon cancer with inactivated or lost p53.
- MeSH
- antikarcinogenní látky toxicita MeSH
- časové faktory MeSH
- delece genu MeSH
- fyziologický stres účinky léků MeSH
- HCT116 buňky MeSH
- lidé MeSH
- lyzozomy účinky léků metabolismus MeSH
- MAP kinasa-kinasa 4 genetika metabolismus MeSH
- mitochondrie účinky léků metabolismus MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- nádory tračníku genetika metabolismus prevence a kontrola MeSH
- poškození DNA účinky léků MeSH
- proliferace buněk účinky léků MeSH
- protein X asociovaný s bcl-2 genetika metabolismus MeSH
- proteiny teplotního šoku genetika metabolismus MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- thiokyanatany toxicita MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Highly Ca2+ selective channels trigger a large variety of cellular signaling processes in both excitable and non-excitable cells. Among these channels, the Orai channel is unique in its activation mechanism and its structure. It mediates Ca2+ influx into the cytosol with an extremely small unitary conductance over longer time-scales, ranging from minutes up to several hours. Its activation is regulated by the Ca2+ content of the endoplasmic reticulum (ER). Depletion of luminal [Ca2+]ER is sensed by the STIM1 single transmembrane protein that directly binds and gates the Orai1 channel. Orai mediated Ca2+ influx increases cytosolic Ca2+ from 100 nM up to low micromolar range close to the pore and thereby forms Ca2+ microdomains. Hence, these features of the Orai channel can trigger long-term signaling processes without affecting the overall Ca2+ content of a single living cell. Here we focus on the architecture and dynamic conformational changes within the Orai channel. This review summarizes current achievements of molecular dynamics simulations in combination with live cell recordings to address gating and permeation of the Orai channel with molecular precision.
Generation of reactive oxygen species significantly contributes to the pathogenesis of acute renal failure (ARF) induced by myoglobin release. Ginsenosides (GS), the principal active ingredients of ginseng, is considered as an extremely good antioxidative composition of Chinese traditional and herbal drugs. The purpose of the present study was to investigate the protective effect of ginsenoside in rats with ARF on the changes of cholinergic nervous system in the kidney as well as on the involvement of mitogen-activated protein kinases (MAPK) in the hypothalamic paraventricular nuclei (PVN). In our assay, glycerol-induced acute renal failure in rats was employed to study the protective effects of ginsenoside. Our results indicated that the treatment of ARF rats with ginsenosides for 48 h significantly reduced lipid peroxidation, restored the superoxide dismutase (SOD) level. Meanwhile, the obvious increase of choline acetyltransferase-immunoreactivity (ChAT-IR) in the proximal convoluted tubular cells (PCT) was observed by immunohistochemistry in ARF+GS group. The same effect was also observed in the changes of p-ERK1/2-IR in the hypothalamic paraventricular nuclei. Our results suggest that ginsenoside administered orally may have a strong renal protective effect against glycerol-induced ARF, reduce the renal oxidative stress, and ginsenoside can also activate the cholinergic system in PCT, simultaneously MAPK signal pathway in the PVN was also activated.
- MeSH
- akutní poškození ledvin chemicky indukované enzymologie patologie prevence a kontrola MeSH
- antioxidancia aplikace a dávkování farmakologie MeSH
- aplikace orální MeSH
- časové faktory MeSH
- cholin-O-acetyltransferasa metabolismus MeSH
- cytoprotekce MeSH
- fosforylace MeSH
- ginsenosidy aplikace a dávkování farmakologie MeSH
- glycerol MeSH
- malondialdehyd metabolismus MeSH
- mitogenem aktivovaná proteinkinasa 1 metabolismus MeSH
- mitogenem aktivovaná proteinkinasa 3 metabolismus MeSH
- modely nemocí na zvířatech MeSH
- nucleus paraventricularis hypothalami účinky léků enzymologie MeSH
- oxidační stres účinky léků MeSH
- peroxidace lipidů účinky léků MeSH
- potkani Sprague-Dawley MeSH
- proximální tubuly ledvin účinky léků enzymologie patologie MeSH
- signální transdukce účinky léků MeSH
- superoxiddismutasa metabolismus MeSH
- upregulace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH