Alzheimer's disease (AD), a leading cause of dementia worldwide, is a multifactorial neurodegenerative disorder characterized by amyloid-beta plaques, tauopathy, neuronal loss, neuro-inflammation, brain atrophy, and cognitive deficits. AD manifests as familial early-onset (FAD) with specific gene mutations or sporadic late-onset (LOAD) caused by various genetic and environmental factors. Numerous transgenic rodent models have been developed to understand AD pathology development and progression. The TgF344-AD rat model is a double transgenic model that carries two human gene mutations: APP with the Swedish mutation and PSEN-1 with delta exon 9 mutations. This model exhibits a complete repertoire of AD pathology in an age-dependent manner. This review summarizes multidisciplinary research insights gained from studying TgF344-AD rats in the context of AD pathology. We explore neuropathological findings; electrophysiological assessments revealing disrupted synaptic transmission, reduced spatial coding, network-level dysfunctions, and altered sleep architecture; behavioral studies highlighting impaired spatial memory; alterations in excitatory-inhibitory systems; and molecular and physiological changes in TgF344-AD rats emphasizing their age-related effects. Additionally, the impact of various interventions studied in the model is compiled, underscoring their role in bridging gaps in understanding AD pathogenesis. The TgF344-AD rat model offers significant potential in identifying biomarkers for early detection and therapeutic interventions, providing a robust platform for advancing translational AD research. Key words Alzheimer's disease, Transgenic AD models, TgF344-AD rats, Spatial coding.
- MeSH
- Alzheimer Disease * genetics pathology metabolism MeSH
- Amyloid beta-Protein Precursor genetics metabolism MeSH
- Rats MeSH
- Humans MeSH
- Disease Models, Animal * MeSH
- Brain pathology metabolism MeSH
- Rats, Inbred F344 MeSH
- Rats, Transgenic * MeSH
- Presenilin-1 genetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
OBJECTIVE: Dementia with Lewy bodies (DLB) and Parkinson's disease (PD) share clinical, pathological, and genetic risk factors, including GBA1 and APOEε4 mutations. Biomarkers associated with the pathways of these mutations, such as glucocerebrosidase enzyme (GCase) activity and amyloid-beta 42 (Aβ42) levels, may hold potential as predictive indicators, providing valuable insights into the likelihood of cognitive decline within these diagnoses. Our objective was to determine their association with cognitive decline in DLB and PD. METHODS: A total of 121 DLB patients from the European-DLB Consortium and 117 PD patients from the Norwegian ParkWest Study were included in this study. The four most commonly associated variants of GBA1 mutations (E326K, T369M, N370S, L444P), APOEε4 status, and cerebrospinal fluid (CSF) Aβ42 levels and GCase activity were assessed, as well as global cognition using the Mini-Mental State Examination. Linear mixed-effects regression models were used to evaluate the association of CSF biomarkers with cognitive decline in each diagnostic group, adjusted for age, sex, education, and genetic mutation profile. RESULTS: Low CSF Aβ42 levels were associated with accelerated cognitive decline in DLB, whereas reduced CSF GCase activity predicted faster cognitive decline in PD. These associations were independent of GBA1 gene mutations or APOEε4 status. INTERPRETATION: Our study provides important evidence on the relationship between brain Aβ deposition and GCase activity in the Lewy body disease spectrum independent of their genetic mutation profile. This information could be relevant for designing future clinical trials targeting these pathways.
- MeSH
- Amyloid beta-Peptides * cerebrospinal fluid MeSH
- Biomarkers cerebrospinal fluid MeSH
- Lewy Body Disease * cerebrospinal fluid genetics complications MeSH
- Glucosylceramidase * genetics metabolism cerebrospinal fluid MeSH
- Cognitive Dysfunction * cerebrospinal fluid genetics etiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Parkinson Disease * cerebrospinal fluid genetics complications MeSH
- Peptide Fragments * cerebrospinal fluid MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
The pace of biological aging varies between people independently of chronological age and mitochondria dysfunction is a key hallmark of biological aging. We hypothesized that higher functional impact (FI) score of mitochondrial DNA (mtDNA) variants might contribute to premature aging and tested the relationships between a novel FI score of mtDNA variants and epigenetic and biological aging in young adulthood. A total of 81 participants from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) prenatal birth cohort had good quality genetic data as well as blood-based markers to estimate biological aging in the late 20. A subset of these participants (n = 69) also had epigenetic data to estimate epigenetic aging in the early 20s using Horvath's epigenetic clock. The novel FI score was calculated based on 7 potentially pathogenic mtDNA variants. Greater FI score of mtDNA variants was associated with older epigenetic age in the early 20s and older biological age in the late 20s. These medium to large effects were independent of sex, current BMI, cigarette smoking, cannabis, and alcohol use. These findings suggest that elevated FI score of mtDNA variants might contribute to premature aging in young adulthood.
- MeSH
- Adult MeSH
- Epigenesis, Genetic * MeSH
- Genetic Variation MeSH
- Humans MeSH
- Longitudinal Studies MeSH
- DNA, Mitochondrial * genetics MeSH
- Young Adult MeSH
- Aging, Premature genetics MeSH
- Aging * genetics MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Myocardial dysfunction, characterized by impaired cardiac muscle function, arises from diverse etiologies, including coronary artery disease, myocardial infarction, cardiomyopathies, hypertension, and valvular heart disease. Recent advancements have highlighted the roles of exosomes and non-coding RNAs in the pathophysiology of myocardial dysfunction. Exosomes are small extracellular vesicles released by cardiac and other cells that facilitate intercellular communication through their molecular cargo, including ncRNAs. ncRNAs are known to play critical roles in gene regulation through diverse mechanisms, impacting oxidative stress, fibrosis, and other factors associated with myocardial dysfunction. Dysregulation of these molecules correlates with disease progression, presenting opportunities for therapeutic interventions. This review explores the mechanistic interplay between exosomes and ncRNAs, underscoring their potential as biomarkers and therapeutic agents in myocardial dysfunction. Emerging evidence supports the use of engineered exosomes and modified ncRNAs to enhance cardiac repair by targeting signaling pathways associated with fibrosis, apoptosis, and angiogenesis. Despite promising preclinical results, delivery, stability, and immunogenicity challenges remain. Further research is needed to optimize clinical translation. Understanding these intricate mechanisms may drive the development of innovative strategies for diagnosing and treating myocardial dysfunction, ultimately improving patient outcomes.
- MeSH
- Biomarkers metabolism MeSH
- Exosomes * metabolism genetics MeSH
- Fibrosis MeSH
- Cardiomyopathies genetics physiopathology metabolism MeSH
- Humans MeSH
- Myocardium metabolism pathology MeSH
- RNA, Untranslated * genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Patients with alcohol use disorder (AUD) who seek treatment show highly variable outcomes. A precision medicine approach with biomarkers responsive to new treatments is warranted to overcome this limitation. Promising biomarkers relate to prefrontal control mechanisms that are severely disturbed in AUD. This results in reduced inhibitory control of compulsive behavior and, eventually, relapse. We reasoned here that prefrontal dysfunction, which underlies vulnerability to relapse, is evidenced by altered neuroelectric signatures and should be restored by pharmacological interventions that specifically target prefrontal dysfunction. To test this, we applied our recently developed biocompatible neuroprosthesis to measure prefrontal neural function in a well-established rat model of alcohol addiction and relapse. We monitored neural oscillations and event-related potentials in awake alcohol-dependent rats during abstinence and following treatment with psilocybin or LY379268, agonists of the serotonin 2A receptor (5-HT2AR), and the metabotropic glutamate receptor 2 (mGluR2), that are known to reduce prefrontal dysfunction and relapse. Electrophysiological impairments in alcohol-dependent rats are reduced amplitudes of P1N1 and N1P2 components and attenuated event-related oscillatory activity. Psilocybin and LY379268 were able to restore these impairments. Furthermore, alcohol-dependent animals displayed a dominance in higher beta frequencies indicative of a state of hyperarousal that is prone to relapse, which particularly psilocybin was able to counteract. In summary, we provide prefrontal markers indicative of relapse and treatment response, especially for psychedelic drugs.
- MeSH
- Alcoholism * drug therapy physiopathology MeSH
- Amino Acids MeSH
- Bridged Bicyclo Compounds, Heterocyclic * pharmacology MeSH
- Biomarkers MeSH
- Evoked Potentials drug effects MeSH
- Rats MeSH
- Disease Models, Animal * MeSH
- Prefrontal Cortex * drug effects physiopathology metabolism MeSH
- Psilocybin * pharmacology MeSH
- Receptors, Metabotropic Glutamate MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Metabolomics and lipidomics have emerged as tools in understanding the connections of metabolic syndrome (MetS) with cardiovascular diseases (CVD), type 1 and type 2 diabetes (T1D, T2D), and metabolic dysfunction-associated steatotic liver disease (MASLD). This review highlights the applications of these omics approaches in large-scale cohort studies, emphasizing their role in biomarker discovery and disease prediction. Integrating metabolomics and lipidomics has significantly advanced our understanding of MetS pathology by identifying unique metabolic signatures associated with disease progression. However, challenges such as standardizing analytical workflows, data interpretation, and biomarker validation remain critical for translating research findings into clinical practice. Future research should focus on optimizing these methodologies to enhance their clinical utility and address the global burden of MetS-related diseases.
- MeSH
- Biomarkers metabolism MeSH
- Diabetes Mellitus, Type 1 metabolism complications MeSH
- Diabetes Mellitus, Type 2 * metabolism MeSH
- Cardiovascular Diseases * metabolism diagnosis MeSH
- Humans MeSH
- Lipidomics * methods MeSH
- Metabolic Syndrome * metabolism MeSH
- Metabolomics * methods MeSH
- Fatty Liver metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Nanomedicine for treating post-viral infectious disease syndrome is at an emerging stage. Despite promising results from preclinical studies on conventional antioxidants, their clinical translation as a therapy for treating post-COVID conditions remains challenging. The limitations are due to their low bioavailability, instability, limited transport to the target tissues, and short half-life, requiring frequent and high doses. Activating the immune system during coronavirus (SARS-CoV-2) infection can lead to increased production of reactive oxygen species (ROS), depleted antioxidant reserve, and finally, oxidative stress and neuroinflammation. To tackle this problem, we developed an antioxidant nanotherapy based on lipid (vesicular and cubosomal types) nanoparticles (LNPs) co-encapsulating ginkgolide B and quercetin. The antioxidant-loaded nanocarriers were prepared by a self-assembly method via hydration of a lyophilized mixed thin lipid film. We evaluated the LNPs in a new in vitro model for studying neuronal dysfunction caused by oxidative stress in coronavirus infection. We examined the key downstream signaling pathways that are triggered in response to potassium persulfate (KPS) causing oxidative stress-mediated neurotoxicity. Treatment of neuronally-derived cells (SH-SY5Y) with KPS (50 mM) for 30 min markedly increased mitochondrial dysfunction while depleting the levels of both glutathione peroxidase (GSH-Px) and tyrosine hydroxylase (TH). This led to the sequential activation of apoptotic and necrotic cell death processes, which corroborates with the crucial implication of the two proteins (GSH-Px and TH) in the long-COVID syndrome. Nanomedicine-mediated treatment with ginkgolide B-loaded cubosomes and vesicular LNPs showed minimal cytotoxicity and completely attenuated the KPS-induced cell death process, decreasing apoptosis from 32.6% (KPS) to 19.0% (MO-GB), 12.8% (MO-GB-Quer), 14.8% (DMPC-PEG-GB), and 23.6% (DMPC-PEG-GB-Quer) via free radical scavenging and replenished GSH-Px levels. These findings indicated that GB-LNPs-based nanomedicines may protect against KPS-induced apoptosis by regulating intracellular redox homeostasis.
- MeSH
- Antioxidants * pharmacology MeSH
- COVID-19 metabolism MeSH
- COVID-19 Drug Treatment * MeSH
- Ginkgolides * pharmacology MeSH
- Glutathione Peroxidase * metabolism MeSH
- Lactones pharmacology MeSH
- Humans MeSH
- Nanoparticles * MeSH
- Nanomedicine * methods MeSH
- Neurons drug effects virology MeSH
- Oxidative Stress * drug effects MeSH
- Quercetin pharmacology MeSH
- Reactive Oxygen Species metabolism MeSH
- SARS-CoV-2 drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Vydanie: prvé 365 stran : ilustrace ; 24 cm
Publikácia sa zameriava na rôzne podoby translačnej mitochondriálnej medicíny. Určené odbornej verejnosti.
- MeSH
- Mitochondrial Diseases therapy MeSH
- Mitochondrial Proteins MeSH
- Mitochondria MeSH
- Translational Science, Biomedical MeSH
- Protein Modification, Translational MeSH
- Conspectus
- Lékařské vědy. Lékařství
- NML Fields
- vnitřní lékařství
- molekulární biologie, molekulární medicína
- biochemie
- NML Publication type
- kolektivní monografie
As a prevalent neurodevelopmental disease, attention-deficit hyperactivity disorder (ADHD) impairs the learning and memory capacity, and so far, there has been no available treatment option for long-term efficacy. Alterations in gene regulation and synapse-related proteins influence learning and memory capacity; nevertheless, the regulatory mechanism of synapse-related protein synthesis is still unclear in ADHD. LncRNAs have been found participating in regulating genes in multiple disorders. For instance, lncRNA Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) has an essential regulatory function in numerous psychiatric diseases. However, how MALAT1 influences synapse-related protein synthesis in ADHD remains largely unknown. Here, our study found that MALAT1 decreased in the hippocampus tissue of spontaneously hypertensive rats (SHRs) compared to the standard controls, Wistar Kyoto (WKY) rats. Subsequent experiments revealed that MALAT1 enhanced the expression of neurexin 1 (NRXN1), which promoted the synapse-related genes (SYN1, PSD95, and GAP43) expression. Then, the bioinformatic analyses predicted that miR-141-3p and miR-200a-3p, microRNAs belonging to miR-200 family and sharing same seed sequence, could interact with MALAT1 and NRXN1 mRNA, which were further confirmed by luciferase report assays. Finally, rescue experiments indicated that MALAT1 influenced the expression of NRXN1 by sponging miR-141-3p/200a-3p. All data verified our hypothesis that MALAT1 regulated synapse-related proteins (SYN1, PSD95, and GAP43) through the MALAT1-miR-141-3p/200a-3p-NRXN1 axis in ADHD. Our research underscored a novel role of MALAT1 in the pathogenesis of impaired learning and memory capacity in ADHD and may shed more light on developing diagnostic biomarkers and more effective therapeutic interventions for individuals with ADHD.
BACKGROUND: Causative genetic variants cannot yet be found for many disorders with a clear heritable component, including chronic fatigue disorders like myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). These conditions may involve genes in difficult-to-align genomic regions that are refractory to short read approaches. Structural variants in these regions can be particularly hard to detect or define with short reads, yet may account for a significant number of cases. Long read sequencing can overcome these difficulties but so far little data is available regarding the specific analytical challenges inherent in such regions, which need to be taken into account to ensure that variants are correctly identified. Research into chronic fatigue disorders faces the additional challenge that the heterogeneous patient populations likely encompass multiple aetiologies with overlapping symptoms, rather than a single disease entity, such that each individual abnormality may lack statistical significance within a larger sample. Better delineation of patient subgroups is needed to target research and treatment. METHODS: We use nanopore sequencing in a case of unexplained severe fatigue to identify and fully characterise a large inversion in a highly homologous region spanning the AKR1C gene locus, which was indicated but could not be resolved by short-read sequencing. We then use GC-MS/MS serum steroid analysis to investigate the functional consequences. RESULTS: Several commonly used bioinformatics tools are confounded by the homology but a combined approach including visual inspection allows the variant to be accurately resolved. The DNA inversion appears to increase the expression of AKR1C2 while limiting AKR1C1 activity, resulting in a relative increase of inhibitory GABAergic neurosteroids and impaired progesterone metabolism which could suppress neuronal activity and interfere with cellular function in a wide range of tissues. CONCLUSIONS: This study provides an example of how long read sequencing can improve diagnostic yield in research and clinical care, and highlights some of the analytical challenges presented by regions containing tandem arrays of genes. It also proposes a novel gene associated with a novel disease aetiology that may be an underlying cause of complex chronic fatigue. It reveals biomarkers that could now be assessed in a larger cohort, potentially identifying a subset of patients who might respond to treatments suggested by the aetiology.
- MeSH
- Biomarkers MeSH
- Hydroxysteroid Dehydrogenases MeSH
- Humans MeSH
- Fatigue Syndrome, Chronic * MeSH
- Tandem Mass Spectrometry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH