Mitochondria are vital organelles with their own DNA (mtDNA). mtDNA is circular and composed of heavy and light chains that are structurally more accessible than nuclear DNA (nDNA). While nDNA is typically diploid, the number of mtDNA copies per cell is higher and varies considerably during development and between tissues. Compared with nDNA, mtDNA is more prone to damage that is positively linked to many diseases, including cancer. Similar to nDNA, mtDNA undergoes repair processes, although these mechanisms are less well understood. In this review, we discuss the various forms of mtDNA damage and repair and their association with cancer initiation and progression. We also propose horizontal mitochondrial transfer as a novel mechanism for replacing damaged mtDNA.
- MeSH
- lidé MeSH
- mitochondriální DNA * genetika MeSH
- mitochondrie * genetika metabolismus MeSH
- nádory * genetika patologie MeSH
- oprava DNA * MeSH
- poškození DNA * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with patients having unresectable or metastatic disease at diagnosis, with poor prognosis and very short survival. Given that genetic variation within autophagy-related genes influences autophagic flux and susceptibility to solid cancers, we decided to investigate whether 55,583 single nucleotide polymorphisms (SNPs) within 234 autophagy-related genes could influence the risk of developing PDAC in three large independent cohorts of European ancestry including 12,754 PDAC cases and 324,926 controls. The meta-analysis of these populations identified, for the first time, the association of the BIDrs9604789 variant with an increased risk of developing the disease (ORMeta = 1.31, p = 9.67 × 10-6). We also confirmed the association of TP63rs1515496 and TP63rs35389543 variants with PDAC risk (OR = 0.89, p = 6.27 × 10-8 and OR = 1.16, p = 2.74 × 10-5). Although it is known that BID induces autophagy and TP63 promotes cell growth, cell motility and invasion, we also found that carriers of the TP63rs1515496G allele had increased numbers of FOXP3+ Helios+ T regulatory cells and CD45RA+ T regulatory cells (p = 7.67 × 10-4 and p = 1.56 × 10-3), but also decreased levels of CD4+ T regulatory cells (p = 7.86 × 10-4). These results were in agreement with research suggesting that the TP63rs1515496 variant alters binding sites for FOXA1 and CTCF, which are transcription factors involved in modulating specific subsets of regulatory T cells. In conclusion, this study identifies BID as new susceptibility locus for PDAC and confirms previous studies suggesting that the TP63 gene is involved in the development of PDAC. This study also suggests new pathogenic mechanisms of the TP63 locus in PDAC.
- MeSH
- autofagie * genetika MeSH
- běloši genetika MeSH
- duktální karcinom slinivky břišní * genetika patologie MeSH
- forkhead transkripční faktory MeSH
- genetická predispozice k nemoci * MeSH
- hepatocytární jaderný faktor 3-alfa genetika metabolismus MeSH
- jednonukleotidový polymorfismus * MeSH
- kohortové studie MeSH
- lidé MeSH
- nádorové biomarkery * genetika MeSH
- nádorové supresorové proteiny * genetika MeSH
- nádory slinivky břišní * genetika patologie MeSH
- studie případů a kontrol MeSH
- transkripční faktory genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
Nonspecific structural chromosomal aberrations (CAs) are found in around 1% of circulating lymphocytes from healthy individuals but the frequency may be higher after exposure to carcinogenic chemicals or radiation. CAs have been used in the monitoring of persons exposed to genotoxic agents and radiation. Previous studies on occupationally exposed individuals have shown associations between the frequency of CAs in peripheral blood lymphocytes and subsequent cancer risk. The cause for CA formation is believed to be unrepaired or insufficiently repaired DNA double-strand breaks or other DNA damage, and additionally telomere shortening. CAs include chromosome (CSAs) and chromatid type aberrations (CTAs). In the present review, we first describe the types of CAs, the conventional techniques used for their detection and some aspects of interpreting the results. We then focus on germline genetic variation in the frequency and type of CAs measured in a genome-wide association study in healthy individuals in relation to occupational and smoking-related exposure compared to nonexposed referents. The associations (at P < 10-5) on 1473 healthy individuals were broadly classified in candidate genes from functional pathways related to DNA damage response/repair, including PSMA1, UBR5, RRM2B, PMS2P4, STAG3L4, BOD1, COPRS, and FTO; another group included genes related to apoptosis, cell proliferation, angiogenesis, and tumorigenesis, COPB1, NR2C1, COPRS, RHOT1, ITGB3, SYK, and SEMA6A; a third small group mapped to genes KLF7, SEMA5A and ITGB3 which were related to autistic traits, known to manifest frequent CAs. Dedicated studies on 153 DNA repair genes showed associations for some 30 genes, the expression of which could be modified by the implicated variants. We finally point out that monitoring of CAs is so far the only method of assessing cancer risk in healthy human populations, and the use of the technology should be made more attractive by developing automated performance steps and incorporating artificial intelligence methods into the scoring.
- MeSH
- celogenomová asociační studie * MeSH
- chromozomální aberace * MeSH
- interakce genů a prostředí MeSH
- lidé MeSH
- lymfocyty metabolismus MeSH
- nádory genetika MeSH
- oprava DNA genetika MeSH
- poškození DNA MeSH
- pracovní expozice škodlivé účinky MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The diagnostic performance of molecular markers in surrogate tissues like stool may be affected by colorectal cancer (CRC) morphological heterogeneity. The mucinous histotype represents a subgroup of CRC with a peculiar molecular program and unfavorable disease progression. However, the percentage of mucinous morphology necessary to define this subtype is still a matter of debate. In this study, we investigated whether stool miRNA profiles of CRC patients differ in patients with mucinous histopathological subtypes compared to non-mucinous cancers. In this respect, we also explored how the stool miRNA signature reported in our previous multicentric study behaves in this histotype. Small-RNA sequencing was performed in fecal and tissue samples of an Italian cohort (n = 172), including 27 CRC with mucinous morphology (mucinous cancers with ≥ 50% mucinous morphology and those with mucinous component ≥ 5% but < 50%), 58 non-mucinous CRC, and 87 colonoscopy-negative controls. Results were compared with fecal miRNA profiles of a cohort from the Czech Republic (n = 98). Most of the differentially expressed (DE) stool miRNAs (n = 324) were in common between CRC with mucinous morphology and non-mucinous histopathological subtypes in comparison with healthy controls. Interestingly, the altered levels of 25 fecal miRNAs previously identified distinguishing CRC cases from controls in both cohorts were also confirmed after stratification for mucinous morphology. Forty-nine miRNAs were DE exclusively in CRC with mucinous morphology and 61 in non-mucinous CRC. Mucinous cancers and those with mucinous component showed fairly similar profiles that were comparable in the Czech cohort. Among the stool DE miRNAs observed in CRC with mucinous morphology, 20 were also altered in the comparison between tumor and adjacent mucosa tissue. This study highlights miRNAs specifically altered in CRC with mucinous morphology. Nevertheless, the performance of our stool miRNA signature in accurately distinguishing CRC cases from controls was not significantly affected by this histological subtype. This aspect further supports the use of stool miRNAs for noninvasive diagnosis and screening strategies.
- MeSH
- feces * chemie MeSH
- kohortové studie MeSH
- kolorektální nádory * genetika patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA * genetika metabolismus MeSH
- mucinózní adenokarcinom * genetika patologie MeSH
- nádorové biomarkery genetika MeSH
- regulace genové exprese u nádorů MeSH
- senioři MeSH
- stanovení celkové genové exprese metody MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
DNA damage is a common event in cells, resulting from both internal and external factors. The maintenance of genomic integrity is vital for cellular function and physiological processes. The inadequate repair of DNA damage results in the genomic instability, which has been associated with the development and progression of various human diseases. Accumulation of DNA damage can lead to multiple diseases, such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and ageing. This comprehensive review delves the impact of alterations in DNA damage response genes (DDR) and tries to elucidate how and to what extent the same traits modulate diverse major human diseases, such as cancer, neurodegenerative diseases, and immunological disorders. DDR is apparently the trait connecting important complex disorders in humans. However, the pathogenesis of the above disorders and diseases are different and lead to divergent consequences. It is important to discover the switch(es) that direct further the pathogenic process either to proliferative, or degenerative diseases. Our understanding of the influence of DNA damage on diverse human disorders may enable the development of the strategies to prevent, diagnose, and treat these diseases. In our article, we analysed publicly available GWAS summary statistics from the NHGRI-EBI GWAS Catalog and identified 12 009 single-nucleotide polymorphisms (SNPs) associated with cancer. Among these, 119 SNPs were found in DDR pathways, exhibiting significant P-values. Additionally, we identified 44 SNPs linked to various cancer types and neurodegenerative diseases (NDDs), including four located in DDR-related genes: ATM, CUX2, and WNT3. Furthermore, 402 SNPs were associated with both cancer and immunological disorders, with two found in the DDR gene RAD51B. This highlights the versatility of the DDR pathway in multifactorial diseases. However, the specific mechanisms that regulate DDR to initiate distinct pathogenic processes remain to be elucidated.
- MeSH
- celogenomová asociační studie MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- nádory * genetika MeSH
- nemoci imunitního systému * genetika MeSH
- nestabilita genomu genetika MeSH
- neurodegenerativní nemoci * genetika MeSH
- oprava DNA * genetika MeSH
- poškození DNA * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Genome-wide association studies (GWASs) based on common single nucleotide polymorphisms (SNPs) have identified several loci associated with the risk of monoclonal gammopathy of unknown significance (MGUS), a precursor condition for multiple myeloma (MM). We hypothesized that analyzing haplotypes might be more useful than analyzing individual SNPs, as it could identify functional chromosomal units that collectively contribute to MGUS risk. To test this hypothesis, we used data from our previous GWAS on 992 MGUS cases and 2910 controls from three European populations. We identified 23 haplotypes that were associated with the risk of MGUS at the genome-wide significance level (p < 5 × 10-8) and showed consistent results among all three populations. In 10 genomic regions, strong promoter, enhancer and regulatory element-related histone marks and their connections to target genes as well as genome segmentation data supported the importance of these regions in MGUS susceptibility. Several associated haplotypes affected pathways important for MM cell survival such as ubiquitin-proteasome system (RNF186, OTUD3), PI3K/AKT/mTOR (HINT3), innate immunity (SEC14L1, ZBP1), cell death regulation (BID) and NOTCH signaling (RBPJ). These pathways are important current therapeutic targets for MM, which may highlight the advantage of the haplotype approach homing to functional units.
- MeSH
- celogenomová asociační studie * MeSH
- genetická predispozice k nemoci * MeSH
- haplotypy * MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé MeSH
- mnohočetný myelom genetika MeSH
- monoklonální gamapatie nejasného významu * genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Genome-wide association studies (GWAS) have identified more than 200 common genetic variants independently associated with colorectal cancer (CRC) risk, but the causal variants and target genes are mostly unknown. We sought to fine-map all known CRC risk loci using GWAS data from 100,204 cases and 154,587 controls of East Asian and European ancestry. Our stepwise conditional analyses revealed 238 independent association signals of CRC risk, each with a set of credible causal variants (CCVs), of which 28 signals had a single CCV. Our cis-eQTL/mQTL and colocalization analyses using colorectal tissue-specific transcriptome and methylome data separately from 1299 and 321 individuals, along with functional genomic investigation, uncovered 136 putative CRC susceptibility genes, including 56 genes not previously reported. Analyses of single-cell RNA-seq data from colorectal tissues revealed 17 putative CRC susceptibility genes with distinct expression patterns in specific cell types. Analyses of whole exome sequencing data provided additional support for several target genes identified in this study as CRC susceptibility genes. Enrichment analyses of the 136 genes uncover pathways not previously linked to CRC risk. Our study substantially expanded association signals for CRC and provided additional insight into the biological mechanisms underlying CRC development.
- MeSH
- Asijci * genetika MeSH
- běloši * genetika MeSH
- celogenomová asociační studie * MeSH
- genetická predispozice k nemoci * MeSH
- jednonukleotidový polymorfismus * MeSH
- kolorektální nádory * genetika MeSH
- lidé MeSH
- lokus kvantitativního znaku * MeSH
- mapování chromozomů MeSH
- sekvenování exomu MeSH
- studie případů a kontrol MeSH
- transkriptom MeSH
- východní Asiaté MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Genome-wide association studies (GWAS) are a powerful tool for detecting variants associated with complex traits and can help risk stratification and prevention strategies against pancreatic ductal adenocarcinoma (PDAC). However, the strict significance threshold commonly used makes it likely that many true risk loci are missed. Functional annotation of GWAS polymorphisms is a proven strategy to identify additional risk loci. We aimed to investigate single-nucleotide polymorphisms (SNP) in regulatory regions [transcription factor binding sites (TFBSs) and enhancers] that could change the expression profile of multiple genes they act upon and thereby modify PDAC risk. We analyzed a total of 12,636 PDAC cases and 43,443 controls from PanScan/PanC4 and the East Asian GWAS (discovery populations), and the PANDoRA consortium (replication population). We identified four associations that reached study-wide statistical significance in the overall meta-analysis: rs2472632(A) (enhancer variant, OR 1.10, 95%CI 1.06,1.13, p = 5.5 × 10-8), rs17358295(G) (enhancer variant, OR 1.16, 95%CI 1.10,1.22, p = 6.1 × 10-7), rs2232079(T) (TFBS variant, OR 0.88, 95%CI 0.83,0.93, p = 6.4 × 10-6) and rs10025845(A) (TFBS variant, OR 1.88, 95%CI 1.50,1.12, p = 1.32 × 10-5). The SNP with the most significant association, rs2472632, is located in an enhancer predicted to target the coiled-coil domain containing 34 oncogene. Our results provide new insights into genetic risk factors for PDAC by a focused analysis of polymorphisms in regulatory regions and demonstrating the usefulness of functional prioritization to identify loci associated with PDAC risk.
- MeSH
- celogenomová asociační studie MeSH
- duktální karcinom slinivky břišní * genetika patologie MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus genetika MeSH
- lidé MeSH
- nádory slinivky břišní * genetika epidemiologie patologie MeSH
- regulační oblasti nukleových kyselin MeSH
- transkripční faktory genetika metabolismus MeSH
- vazebná místa genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
MUC13, a transmembrane mucin glycoprotein, is overexpressed in colorectal cancer (CRC), however, its regulation and functions are not fully understood. It has been shown that MUC13 protects colonic epithelial cells from apoptosis. Therefore, studying MUC13 and MUC13-regulated pathways may reveal promising therapeutic approaches for CRC treatment. Growing evidence suggests that microRNAs (miRs) are involved in the development and progression of CRC. In the present study, the MUC13-miR-4647 axis was addressed in association with survival of patients. miR-4647 is predicted in silico to bind to the MUC13 gene and was analyzed by RT-qPCR in 187 tumors and their adjacent non-malignant mucosa of patients with CRC. The impact of previously mentioned genes on survival and migration abilities of cancer cells was validated in vitro. Significantly upregulated MUC13 (P=0.02) in was observed tumor tissues compared with non-malignant adjacent mucosa, while miR-4647 (P=0.05) showed an opposite trend. Higher expression levels of MUC13 (log-rank P=0.05) were associated with worse patient's survival. The ectopic overexpression of studied miR resulted in decreased migratory abilities and worse survival of cells. Attenuated MUC13 expression levels confirmed the suppression of colony forming of CRC cells. In summary, the present data suggested the essential role of MUC13-miR-4647 in patients' survival, and this axis may serve as a novel therapeutic target. It is anticipated MUC13 may hold significant potential in the screening, diagnosis and treatment of CRC.
- Publikační typ
- časopisecké články MeSH