In early stages of Alzheimer's disease (AD), amyloid beta (Aβ) accumulates in the mitochondrial matrix and interacts with mitochondrial proteins, such as cyclophilin D (cypD) and 17β-hydroxysteroid dehydrogenase 10 (17β-HSD10). Multiple processes associated with AD such as increased production or oligomerization of Aβ affect these interactions and disbalance the equilibrium between the biomolecules, which contributes to mitochondrial dysfunction. Here, we investigate the effect of the ionic environment on the interactions of Aβ (Aβ1-40, Aβ1-42) with cypD and 17β-HSD10 using a surface plasmon resonance (SPR) biosensor. We show that changes in concentrations of K+ and Mg2+ significantly affect the interactions and may increase the binding efficiency between the biomolecules by up to 35% and 65% for the interactions with Aβ1-40 and Aβ1-42, respectively, in comparison with the physiological state. We also demonstrate that while the binding of Aβ1-40 to cypD and 17β-HSD10 takes place preferentially around the physiological concentrations of ions, decreased concentrations of K+ and increased concentrations of Mg2+ promote the interaction of both mitochondrial proteins with Aβ1-42. These results suggest that the ionic environment represents an important factor that should be considered in the investigation of biomolecular interactions taking place in the mitochondrial matrix under physiological as well as AD-associated conditions.
- MeSH
- 17-hydroxysteroidní dehydrogenasy chemie genetika MeSH
- Alzheimerova nemoc diagnóza genetika patologie MeSH
- amyloidní beta-protein chemie MeSH
- biosenzitivní techniky metody MeSH
- ionty chemie MeSH
- lidé MeSH
- mitochondriální proteiny chemie MeSH
- mitochondrie chemie MeSH
- peptidové fragmenty chemie genetika MeSH
- peptidylprolylisomerasa F chemie genetika MeSH
- povrchová plasmonová rezonance metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
A-kinase interacting protein 1 (AKIP1) has been shown to interact with a broad range of proteins involved in various cellular processes, including apoptosis, tumorigenesis, and oxidative stress suggesting it might have multiple cellular functions. In this study, we used an epitope-tagged AKIP1 and by combination of immunochemical approaches, microscopic methods and reporter assays we studied its properties. Here, we show that various levels of AKIP1 overexpression in HEK-293 cells affected not only its subcellular localization but also resulted in aggregation. While highly expressed AKIP1 accumulated in electron-dense aggregates both in the nucleus and cytosol, low expression of AKIP1 resulted in its localization within the nucleus as a free, non-aggregated protein. Even though AKIP1 was shown to interact with p65 subunit of NF-kappaB and activate this transcription factor, we did not observe any effect on NF-kappaB activation regardless of various AKIP1 expression level.
- MeSH
- adaptorové proteiny signální transdukční biosyntéza genetika MeSH
- buněčné jádro chemie metabolismus MeSH
- cytosol chemie metabolismus MeSH
- HEK293 buňky MeSH
- jaderné proteiny biosyntéza genetika MeSH
- lidé MeSH
- mitochondrie chemie metabolismus MeSH
- NF-kappa B analýza metabolismus MeSH
- regulace genové exprese MeSH
- subcelulární frakce chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Emerging evidence has linked mitochondrial dysfunction to the pathogenesis of many renal disorders, including acute kidney injury, sepsis and even chronic kidney disease. Proteomics is a powerful tool in elucidating the role of mitochondria in renal pathologies. Since the pig is increasingly recognized as a major mammalian model for translational research, the lack of physiological proteome data of large mammals prompted us to examine renal mitochondrial proteome in porcine kidney cortex and medulla METHODS: Kidneys were obtained from six healthy pigs. Mitochondria from cortex and medulla were isolated using differential centrifugation and proteome maps of cortical and medullar mitochondria were constructed using two-dimensional gel electrophoresis (2DE). Protein spots with significant difference between mitochondrial fraction of renal cortex and medulla were identified by mass spectrometry. RESULTS: Proteomic analysis identified 81 protein spots. Of these spots, 41 mitochondrial proteins were statistically different between renal cortex and medulla (p < 0.05). Protein spots containing enzymes of beta oxidation, amino acid metabolism, and gluconeogenesis were predominant in kidney cortex mitochondria. Spots containing tricarboxylic acid cycle enzymes and electron transport system proteins, proteins maintaining metabolite transport and mitochondrial translation were more abundant in medullar mitochondria. CONCLUSION: This study provides the first proteomic profile of porcine kidney cortex and medullar mitochondrial proteome. Different protein expression pattern reflects divergent functional metabolic role of mitochondria in various kidney compartments. Our study could serve as a useful reference for further porcine experiments investigating renal mitochondrial physiology under various pathological states.
- MeSH
- 2D gelová elektroforéza MeSH
- dřeň ledvin chemie MeSH
- kůra ledviny chemie MeSH
- mitochondriální proteiny analýza MeSH
- mitochondrie chemie MeSH
- modely u zvířat MeSH
- proteomika metody MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- Sus scrofa MeSH
- tandemová hmotnostní spektrometrie MeSH
- translační biomedicínský výzkum metody MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Iron-sulphur clusters (ISCs) are protein co-factors essential for a wide range of cellular functions. The core iron-sulphur cluster assembly machinery resides in the mitochondrion, yet due to export of an essential precursor from the organelle, it is also needed for cytosolic and nuclear iron-sulphur cluster assembly. In mitochondria all [4Fe-4S] iron-sulphur clusters are synthesised and transferred to specific apoproteins by so-called iron-sulphur cluster targeting factors. One of these factors is the universally present mitochondrial Nfu1, which in humans is required for the proper assembly of a subset of mitochondrial [4Fe-4S] proteins. Although most eukaryotes harbour a single Nfu1, the genomes of Trypanosoma brucei and related flagellates encode three Nfu genes. All three Nfu proteins localise to the mitochondrion in the procyclic form of T. brucei, and TbNfu2 and TbNfu3 are both individually essential for growth in bloodstream and procyclic forms, suggesting highly specific functions for each of these proteins in the trypanosome cell. Moreover, these two proteins are functional in the iron-sulphur cluster assembly in a heterologous system and rescue the growth defect of a yeast deletion mutant.
- MeSH
- chemická frakcionace MeSH
- down regulace MeSH
- elektroporace MeSH
- fylogeneze MeSH
- kultivované buňky MeSH
- mitochondriální proteiny fyziologie MeSH
- mitochondrie chemie fyziologie MeSH
- plazmidy MeSH
- proteiny obsahující železo a síru genetika imunologie fyziologie MeSH
- proteiny tepelného šoku HSP70 metabolismus MeSH
- protilátky protozoální biosyntéza MeSH
- protozoální proteiny genetika imunologie fyziologie MeSH
- RNA interference MeSH
- Trypanosoma brucei brucei chemie klasifikace genetika fyziologie MeSH
- výpočetní biologie MeSH
- western blotting MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: Dysfunction of kidney mitochondria plays a critical role in the pathogenesis of a number of renal diseases. Proteomics represents an untargeted attempt to reveal the remodeling of mitochondrial proteins during disease. Combination of separation methods and mass spectrometry allows identification and quantitative analysis of mitochondrial proteins including protein complexes. The aim of this review is to summarize the methods and applications of proteomics to renal mitochondria. METHODS: Using keywords "mitochondria", "kidney", "proteomics", scientific databases (PubMed and Web of knowledge) were searched from 2000 to August 2015 for articles describing methods and applications of proteomics to analysis of mitochondrial proteins in kidney. Included were publications on mitochondrial proteins in kidneys of humans and animal model in health and disease. RESULTS AND CONCLUSION: Proteomics of renal mitochondria has been/is mostly used in diabetes, hypertension, acidosis, nephrotoxicity and renal cancer. Integration of proteomics with other methods for examining protein activity is promising for insight into the role of renal mitochondria in pathological states. Several challenges were identified: selection of appropriate model organism, sensitivity of analytical methods and analysis of mitochondrial proteome in different renal zones/biopsies in the course of various kidney disorders.
- MeSH
- acidóza etiologie MeSH
- akutní poškození ledvin etiologie MeSH
- diabetické nefropatie etiologie MeSH
- elektroforéza metody MeSH
- ledviny chemie MeSH
- lidé MeSH
- mitochondriální proteiny analýza MeSH
- mitochondrie chemie fyziologie MeSH
- nádory ledvin etiologie MeSH
- nemoci ledvin etiologie MeSH
- proteomika metody MeSH
- renální hypertenze etiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The human 5'(3')-deoxyribonucleotidases catalyze the dephosphorylation of deoxyribonucleoside monophosphates to the corresponding deoxyribonucleosides and thus help to maintain the balance between pools of nucleosides and nucleotides. Here, the structures of human cytosolic deoxyribonucleotidase (cdN) at atomic resolution (1.08 Å) and mitochondrial deoxyribonucleotidase (mdN) at near-atomic resolution (1.4 Å) are reported. The attainment of an atomic resolution structure allowed interatomic distances to be used to assess the probable protonation state of the phosphate anion and the side chains in the enzyme active site. A detailed comparison of the cdN and mdN active sites allowed the design of a cdN-specific inhibitor.
- MeSH
- cytosol chemie enzymologie MeSH
- deoxyribonukleotidy chemie MeSH
- Escherichia coli genetika metabolismus MeSH
- eukaryotické buňky chemie enzymologie MeSH
- fosfáty chemie MeSH
- inhibitory enzymů chemie MeSH
- izoenzymy antagonisté a inhibitory chemie genetika MeSH
- katalytická doména MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- mitochondrie chemie enzymologie MeSH
- molekulární modely MeSH
- nukleotidasy antagonisté a inhibitory chemie genetika MeSH
- organofosfonáty chemie MeSH
- orgánová specificita MeSH
- racionální návrh léčiv MeSH
- rekombinantní proteiny chemie genetika MeSH
- simulace molekulového dockingu MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cardiolipin, an anionic phospholipid, in the inner mitochondrial membrane is involved in the regulation of mitochondrial bioenergetics and in oxidative phosphorylation. In addition, cardiolipin plays also some role in mitochondria-dependent steps of apoptosis and in mitochondrial membrane dynamics. Alterations in cardiolipin structure (remodelling), its content or the composition of acyl chains as the consequences of oxidative damage due to reactive oxygen species (ROS) are proposed to be responsible for the changes in the mitochondrial membrane fluidity, ion permeability and structure/function of the mitochondrial electron-transport chain components. The mitochondrial dysfunction caused by the above events has been associ¬ated with several physiopathological conditions in human tissues, including Barth syndrome, ischemia/reperfusion, different thyroid states, diabetes, aging or heart failure.
- MeSH
- apoptóza MeSH
- Barthův syndrom etiologie MeSH
- biogeneze organel * MeSH
- buněčná membrána fyziologie MeSH
- Ca2+-ATPasy MeSH
- fosfolipidy biosyntéza fyziologie MeSH
- homeostáza MeSH
- kardiolipiny * biosyntéza fyziologie metabolismus MeSH
- kardiovaskulární nemoci etiologie MeSH
- lidé MeSH
- mitochondriální ADP/ATP-translokasy MeSH
- mitochondriální protonové ATPasy MeSH
- mitochondrie * fyziologie chemie MeSH
- nemoci endokrinního systému etiologie MeSH
- neurodegenerativní nemoci etiologie MeSH
- oxidační stres MeSH
- peroxidace lipidů MeSH
- reaktivní formy kyslíku MeSH
- Check Tag
- lidé MeSH
Coenzyme Q (CoQ), a lipophilic substituted benzoquinone present in all cells. Besides its fundamental role of an electron carrier associated with energy production in the respiratory chain, CoQ has two other functions in mitochondria. It is an essential factor in activation of protein uncoupling and it controls permeability of transition pores. Moreover, it participates in extramitochondrial electron transport in plasma membranes and lysosomes, controls physicochemical properties of membranes, and is the only endogenous lipid antioxidant. Its pro-oxidant role consists in generating the major superoxide radical/H2O2 secondmessenger system. Biosynthesis of CoQ proceeds in every cell, small amounts of CoQ can be obtained from diet. CoQ is also available as a dietary supplement. It shows minimal toxicity, excellent tolerance, and no significant side effects. Its beneficial effects are largely attributed to its essential role in cellular bioenergetics and antioxidant properties. Supplementation of CoQ can improve conditions of a wide range of pathological states. Some forms of mitochondrial CoQ deficiency respond well to its oral administration. Recent meta-analysis of tests for hypertension is also promising. This review summarizes the current knowledge of the therapeutic efficacy of CoQ in various diseases.
- MeSH
- antioxidancia terapeutické užití MeSH
- energetický metabolismus fyziologie účinky léků MeSH
- financování organizované MeSH
- klinické zkoušky jako téma využití MeSH
- lékové interakce fyziologie MeSH
- lidé MeSH
- medicína založená na důkazech trendy MeSH
- mitochondrie fyziologie chemie metabolismus MeSH
- nežádoucí účinky léčiv metabolismus MeSH
- oxidace-redukce MeSH
- oxidancia izolace a purifikace MeSH
- potravní doplňky využití MeSH
- ubichinon dějiny izolace a purifikace terapeutické užití MeSH
- Check Tag
- lidé MeSH
The KlPGS1 gene encoding phosphatidylglycerolphosphate synthase (PGPS) is essential for the viability and multiplication of Kluyveromyces lactis. Regulation of PGPS expression by factors affecting mitochondrial development (C source, growth phase) and general phospholipid biosynthesis was followed. PGS1 mRNA levels were not altered as cells progressed from the exponential to the stationary phase of growth in glucose. PGS1 mRNA abundance was nearly identical in cells growing in a medium with glucose or glycerol as the sole C source during the different growth phases. Regulation of PGS1 expression by exogenous myo-inositol and choline was not mediated at the transcriptional level, the PGPS activity dropped to 70 % after myo-inositol addition.
- MeSH
- aerobióza MeSH
- cholin metabolismus MeSH
- fungální proteiny genetika chemie metabolismus MeSH
- genetická transkripce MeSH
- inositol metabolismus MeSH
- Kluyveromyces MeSH
- mitochondrie genetika chemie metabolismus MeSH
- regulace genové exprese enzymů MeSH
- regulace genové exprese u hub MeSH
- terciární struktura proteinů MeSH
- transferasy pro jiné substituované fosfátové skupiny MeSH
- Klíčová slova
- Provinol,
- MeSH
- alfa-tokoferol chemie MeSH
- fenoly farmakologie MeSH
- finanční podpora výzkumu jako téma MeSH
- hypertenze farmakoterapie MeSH
- krevní tlak účinky záření MeSH
- mitochondrie chemie MeSH
- mozek MeSH
- potkani inbrední SHR MeSH
- synthasa oxidu dusnatého chemie MeSH
- ubichinon chemie MeSH
- víno MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH