Epithelial-mesenchymal transition (EMT) is a crucial process with significance in the metastasis of malignant tumors. It is through the acquisition of plasticity that cancer cells become more mobile and gain the ability to metastasize to other tissues. The mesenchymal-epithelial transition (MET) is the return to an epithelial state, which allows for the formation of secondary tumors. Both processes, EMT and MET, are regulated by different pathways and different mediators, which affects the sophistication of the overall tumorigenesis process. Not insignificant are also cancer stem cells and their participation in the angiogenesis, which occur very intensively within tumors. Difficulties in effectively treating cancer are primarily dependent on the potential of cancer cells to rapidly expand and occupy secondarily vital organs. Due to the ability of these cells to spread, the concept of the circulating tumor cell (CTC) has emerged. Interestingly, CTCs exhibit molecular diversity and stem-like and mesenchymal features, even when derived from primary tumor tissue from a single patient. While EMT is necessary for metastasis, MET is required for CTCs to establish a secondary site. A thorough understanding of the processes that govern the balance between EMT and MET in malignancy is crucial.
- MeSH
- epitelo-mezenchymální tranzice * MeSH
- fenotyp MeSH
- kmenové buňky metabolismus cytologie patologie MeSH
- lidé MeSH
- nádorové cirkulující buňky * patologie metabolismus MeSH
- nádorové kmenové buňky * patologie metabolismus MeSH
- nádory patologie metabolismus MeSH
- patologická angiogeneze * patologie MeSH
- proliferace buněk genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Breast cancers are a heterogeneous group of tumors classified according to their histological growth patterns and receptor expression characteristics. Intratumor heterogeneity also exists, with subpopulations of cells with different phenotypes found in individual cancers, including cells with stem or progenitor cell properties. At least two types of breast cancer stem cells (CSCs) exist, the epithelial and the basal/mesenchymal subtypes, although how these phenotypes are controlled is unknown. ΔNp63 is a basal cell marker and regulator of stem/progenitor cell activities in the normal mammary gland and is expressed in the basal-like CSC subpopulation in some estrogen receptor-positive (ER+) and/or human epidermal growth factor receptor 2-positive (HER2+) breast adenocarcinomas. Whilst p63 is known to directly impart CSC properties in luminal breast cancer cells, how p63 is regulated and induced in these cells is unknown. We initially confirmed the existence of a small subpopulation of ΔNp63+ cells in lymph node metastases of ER+ human ductal adenocarcinomas, indicating together with previous reports that ΔNp63+ tumor cells are present in approximately 40% of these metastases. Notably, ΔNp63+ cells show a preferential location at the edge of tumor areas, suggesting possible regulation of ΔNp63 by the tumor microenvironment. Subsequently, we showed that the high levels of ΔNp63 in basal non-transformed MCF-10A mammary epithelial cells rely on insulin in their culture medium, whilst ΔNp63 levels are increased in MCF-7 ER+ luminal-type breast cancer cells treated with insulin or insulin-like growth factor 1 (IGF-1). Mechanistically, small molecule inhibitors and siRNA gene knockdown demonstrated that induction of ΔNp63 by IGF-1 requires PI3K, ERK1/2, and p38 MAPK activation, and acts through FOXO transcriptional inactivation. We also show that metformin inhibits ΔNp63 induction. These data reveal an IGF-mediated mechanism to control basal-type breast CSCs, with therapeutic implications to modify intratumor breast cancer cell heterogeneity and plasticity.
Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
Nestr.
Chronická myeloidní leukémie (CML) je nádorové onemocnění charakterizované přítomností fúzního genu BCR-ABL1 a úspěšně léčena tyrozin kinázovými inhibitory (TKI). Selhání léčby může být zapříčiněno jednak faktory na straně pacienta (např. farmakokinetika), a jednak vlastnostmi nádorové buňky. Zde jsou hlavními příčinami mutace v kinázové doméně BCR-ABL1, způsobující rezistenci k TKI, nebo jiné mutace v genech mimo BCR-ABL1. Mutace v BCR-ABL1 genu i mimo BCR-ABL1 detekované v době diagnózy často mizí po zahájení TKI terapie a jejich klinický význam je proto nejasný. Příčinou může být fakt, že nevznikají v leukemických kmenových buňkách ale až ve vyzrálejších progenitorech, které jsou následkem TKI eliminované. Zatímco mutace v leukemických kmenových buňkách rezistentních na terapii mohou přetrvávat. Objasnění může přinést analýza mutací BCR-ABL1 a jiných genů v hierarchicky roztříděných populacích progenitorů a kmenových buněk v době diagnózy a na začátku terapie. Předpokládané výsledky objasní, zda mutace v kmenových buňkách mají větší předpoklad přežít TKI léčbu a vést k selhání.; Chronic myeloid leukemia (CML) is malignant disease characterised by a presence of BCR-ABL1 fusion gene and successfully treated by tyrosine kinase inhibitors (TKI). Treatment failure can be caused by factors on the side of patient, e.g. pharmacokinetics, or by the cancer cell characteristics. Here the main reason are mutations in the BCR-ABL1 kinase domain, leading to TKI resistance, or other mutations in non-BCR-ABL1 genes. They can be detected at diagnosis, but often disappear after the start of TKI therapy, therefore their clinical significance is unclear. The reason may be the fact that they originate in more mature progenitors which are then eliminated by TKIs, while mutations originating in therapy resistant stem cells persist. This hypothesis may be confirmed by the analysis of BCR-ABL1 and non-BCR-ABL1 mutations in hierarchically sorted progenitor and stem-cell enriched populations at diagnosis and early follow-up. The expected results may explain if mutations in stem cells have higher probability to survive the TKI treatment and may lead to treatment failure or relapse.
- MeSH
- bcr-abl fúzní proteiny genetika MeSH
- chronická myeloidní leukemie genetika MeSH
- genetické techniky MeSH
- inhibitory tyrosinkinasy MeSH
- kmenové buňky patologie MeSH
- lidé MeSH
- mutace genetika MeSH
- Check Tag
- lidé MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- genetika, lékařská genetika
- onkologie
- NLK Publikační typ
- závěrečné zprávy o řešení grantu AZV MZ ČR
Duchenne muscular dystrophy (DMD) is a devastating condition shortening the lifespan of young men. DMD patients suffer from age-related dilated cardiomyopathy (DCM) that leads to heart failure. Several molecular mechanisms leading to cardiomyocyte death in DMD have been described. However, the pathological progression of DMD-associated DCM remains unclear. In skeletal muscle, a dramatic decrease in stem cells, so-called satellite cells, has been shown in DMD patients. Whether similar dysfunction occurs with cardiac muscle cardiovascular progenitor cells (CVPCs) in DMD remains to be explored. We hypothesized that the number of CVPCs decreases in the dystrophin-deficient heart with age and disease state, contributing to DCM progression. We used the dystrophin-deficient mouse model (mdx) to investigate age-dependent CVPC properties. Using quantitative PCR, flow cytometry, speckle tracking echocardiography, and immunofluorescence, we revealed that young mdx mice exhibit elevated CVPCs. We observed a rapid age-related CVPC depletion, coinciding with the progressive onset of cardiac dysfunction. Moreover, mdx CVPCs displayed increased DNA damage, suggesting impaired cardiac muscle homeostasis. Overall, our results identify the early recruitment of CVPCs in dystrophic hearts and their fast depletion with ageing. This latter depletion may participate in the fibrosis development and the acceleration onset of the cardiomyopathy.
- MeSH
- dilatační kardiomyopatie genetika metabolismus patologie MeSH
- Duchennova muskulární dystrofie genetika metabolismus patologie MeSH
- dystrofin nedostatek genetika MeSH
- kardiomyocyty metabolismus patologie MeSH
- kardiovaskulární systém metabolismus patologie MeSH
- kmenové buňky metabolismus patologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myokard metabolismus patologie MeSH
- myši inbrední mdx genetika MeSH
- myši MeSH
- poškození DNA genetika MeSH
- protoonkogenní proteiny c-kit genetika MeSH
- regulace genové exprese genetika MeSH
- stárnutí genetika patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The skin surface is modified by numerous appendages. These structures arise from epithelial stem cells (SCs) through the induction of epidermal placodes as a result of local signalling interplay with mesenchymal cells based on the Wnt-(Dkk4)-Eda-Shh cascade. Slight modifications of the cascade, with the participation of antagonistic signalling, decide whether multipotent epidermal SCs develop in interfollicular epidermis, scales, hair/feather follicles, nails or skin glands. This review describes the roles of epidermal SCs in the development of skin adnexa and interfollicular epidermis, as well as their maintenance. Each skin structure arises from distinct pools of epidermal SCs that are harboured in specific but different niches that control SC behaviour. Such relationships explain differences in marker and gene expression patterns between particular SC subsets. The activity of well-compartmentalized epidermal SCs is orchestrated with that of other skin cells not only along the hair cycle but also in the course of skin regeneration following injury. This review highlights several membrane markers, cytoplasmic proteins and transcription factors associated with epidermal SCs.
- MeSH
- buněčná diferenciace genetika MeSH
- epidermální buňky metabolismus patologie MeSH
- epidermis metabolismus patologie MeSH
- kmenové buňky metabolismus patologie MeSH
- kůže patologie MeSH
- lidé MeSH
- signální transdukce genetika MeSH
- vlasový folikul metabolismus patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
3-dimensional (3D) cell cultures are being increasingly recognized as physiologically more relevant in vitro models than traditional monolayer cultures, because they better mimic in vivo-like microenvironment, cell-cell and cell-extracellular matrix interactions. Nevertheless, the broader use of 3D models might be limited by requirements for special consumables, equipment, or skills for 3D cell cultures, and by their limited throughput and scalability. In this study, we optimized and adapted a commercially available agarose-micromolding technique to produce scaffold-free spheroid cultures. Brightfield microscopy was used for routine nondestructive and noninvasive evaluation of spheroid formation and growth. The workflow is compatible with manual, as well as high speed automated microscopic image acquisition, and it is supplemented with an in-house developed macro 'Spheroid_Finder' for open source software Fiji to facilitate rapid automated image analysis. This protocol was used to characterize and quantify spheroid formation and growth of two different hepatic cell lines, hTERT immortalized, but non-cancerous, adult human liver stem cell line HL1-hT1, and human hepatocellular carcinoma cell line HepG2, as well as their responses to a model antiproliferative and cytotoxic agent, 5-fluorouracil. The complete protocol provides a simple and ready-to-use solution to initiate scaffold-free spheroid cultures in any laboratory with standard equipment for mammalian in vitro cell culture work. Thus, it allows to increase throughput and scale of spheroid culture experiments, which can be greatly utilized in different areas of biomedical, pharmaceutical and toxicological research.
- MeSH
- buněčné kultury MeSH
- buněčné sféroidy MeSH
- buňky Hep G2 MeSH
- časové faktory MeSH
- fluoruracil farmakologie toxicita MeSH
- hepatocelulární karcinom farmakoterapie metabolismus patologie MeSH
- játra účinky léků metabolismus patologie MeSH
- kmenové buňky účinky léků metabolismus patologie MeSH
- lidé MeSH
- nádory jater farmakoterapie metabolismus patologie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové antimetabolity farmakologie toxicita MeSH
- průběh práce MeSH
- rychlé screeningové testy * MeSH
- screeningové testy protinádorových léčiv MeSH
- testy toxicity MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Tagging cells of experimental organisms with genetic markers is commonly used in biomedical research. Insertion of artificial gene constructs can be highly beneficial for research as long as this tagging is functionally neutral and does not alter the tissue function. The transgenic UBC-GFP mouse has been recently found to be questionable in this respect, due to a latent stem cell defect compromising its lymphopoiesis and significantly influencing the results of competitive transplantation assays. In this study, we show that the stem cell defect present in UBC-GFP mice negatively affects T-lymphopoiesis significantly more than B-lymphopoiesis. The production of granulocytes is not negatively affected. The defect in T-lymphopoiesis causes a low total number of white blood cells in the peripheral blood of UBC-GFP mice which, together with the lower lymphoid/myeloid ratio in nucleated blood cells, is the only abnormal phenotype in untreated UBCGFP mice to have been found to date. The defective lymphopoiesis in UBC-GFP mice can be repaired by transplantation of congenic wild-type bone marrow cells, which then compensate for the insufficient production of T cells. Interestingly, the wild-type branch of haematopoiesis in chimaeric UBC-GFP/wild-type mice was more active in lymphopoiesis, and particularly towards production of T cells, compared to the lymphopoiesis in normal wild-type donors.
- MeSH
- kmenové buňky metabolismus patologie MeSH
- lymfopoéza * MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- T-lymfocyty metabolismus patologie MeSH
- ubikvitin genetika metabolismus MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The aryl hydrocarbon receptor (AhR) activation has been shown to alter proliferation, apoptosis, or differentiation of adult rat liver progenitors. Here, we investigated the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated AhR activation on a human model of bipotent liver progenitors, undifferentiated HepaRG cells. We used both intact undifferentiated HepaRG cells, and the cells with silenced Hippo pathway effectors, yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which play key role(s) in tissue-specific progenitor cell self-renewal and expansion, such as in liver, cardiac, or respiratory progenitors. TCDD induced cell proliferation in confluent undifferentiated HepaRG cells; however, following YAP, and, in particular, double YAP/TAZ knockdown, TCDD promoted induction of apoptosis. These results suggested that, unlike in mature hepatocytes, or hepatocyte-like cells, activation of the AhR may sensitize undifferentiated HepaRG cells to apoptotic stimuli. Induction of apoptosis in cells with silenced YAP/TAZ was associated with upregulation of death ligand TRAIL, and seemed to involve both extrinsic and mitochondrial apoptosis pathways. Global gene expression analysis further suggested that TCDD significantly altered expression of constituents and/or transcriptional targets of signaling pathways participating in control of expansion or differentiation of liver progenitors, including EGFR, Wnt/β-catenin, or tumor growth factor-β signaling pathways. TCDD significantly upregulated cytosolic proapoptotic protein BMF (Bcl-2 modifying factor) in HepaRG cells, which could be linked with an enhanced sensitivity of TCDD-treated cells to apoptosis. Our results suggest that, in addition to promotion of cell proliferation and alteration of signaling pathways controlling expansion of human adult liver progenitors, AhR ligands may also sensitize human liver progenitor cells to apoptosis.
- MeSH
- adaptorové proteiny signální transdukční genetika MeSH
- apoptóza účinky léků genetika MeSH
- biologické modely * MeSH
- buněčné linie MeSH
- exprese genu účinky léků MeSH
- játra účinky léků patologie MeSH
- kmenové buňky účinky léků patologie MeSH
- lidé MeSH
- malá interferující RNA genetika MeSH
- polychlorované dibenzodioxiny toxicita MeSH
- proliferace buněk účinky léků genetika MeSH
- receptory aromatických uhlovodíků metabolismus MeSH
- signální transdukce MeSH
- trans-aktivátory genetika MeSH
- transfekce MeSH
- transkripční faktory genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH