Endemism
Dotaz
Zobrazit nápovědu
We describe the monoxenous trypanosomatids parasitizing true bugs and flies on the island of Curaçao. Out of 248 examined true bugs belonging to 17 species, 93 individuals were found to be infected (overall 38% prevalence) by at least one trypanosomatid species (referred to as typing units; TUs). Out of 80 flies, six were infected. All detected trypanosomatids were compared based on their 18S rRNA sequences with TUs parasitizing bugs and flies described from mainland South America, allowing us to assess their diversity and distribution. Besides Leptomonas pyrrhocoris and Leptomonas seymouri, two known species of the subfamily Leishmaniinae, our analysis revealed six new TUs falling into the groups 'jaculum', Blastocrithidia and Herpetomonas. Moreover, two new members of the genus Phytomonas and three new TUs belonging to the monophyletic group designated as 'new clade II' sensu Mol. Phylogenet. Evol, 69, 255 (2013) were isolated. The detected trypanosomatids were characterized by moderate diversity (13 TUs) species richness. Out of nine and four TUs from the heteropteran and dipteran hosts, respectively, 11 TUs have not been encountered before. Although a sampling bias may partially affect the comparison between trypanosomatid communities on Curaçao and the mainland, the high proportion of unique TUs from the former location suggests that the prominent role of islands in increasing the global diversity of macroscopic organisms may also extend to their protistan parasites.
- MeSH
- Diptera parazitologie MeSH
- fylogeneze MeSH
- Heteroptera parazitologie MeSH
- RNA protozoální analýza MeSH
- RNA ribozomální 18S analýza MeSH
- Trypanosomatina klasifikace genetika izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Curacao MeSH
Background: Refugia are island-like habitats that are linked to long-term environmental stability and, as a result, high endemism. Conservation of refugia and endemism hotspots should be based on a deep ecological and evolutionary understanding of their functioning, which remains limited. Although functional traits can provide such insights, a corresponding, coherent framework is lacking. Proposed Framework: Plant communities in refugia and endemism hotspots should, due to long-term environmental stability, display unique functional characteristics linked to distinct phylogenetic patterns. Therefore, such communities should be characterized by a functional signature that exhibits: (1) distinct values and combinations of traits, (2) higher functional diversity and (3) a prevalence of similar traits belonging to more distantly related lineages inside, compared to outside, of endemism hotspots and refugia. While the limited functional trait data available from refugia and endemism hotspots do not allow these predictions to be tested rigorously, three potential applications of the functional signature in biogeography and conservation planning are highlighted. Firstly, it allows the functional characteristics of endemism hotspots and refugia to be identified. Secondly, the strength of the functional signature can be compared among these entities, and with the surrounding landscape, to provide an estimate of the capacity of endemism hotspots and refugia to buffer environmental changes. Finally, the pattern of the functional signature can reveal ecological and evolutionary processes driving community assembly and functioning, which can assist in predicting the effect of environmental changes (e.g. climate, land-use) on communities in endemism hotspots and refugia. Conclusion: The proposed functional signature concept allows the systematic integration of plant functional traits and phylogeny into the study of endemism hotspots and refugia, but more data on functional traits in these entities are urgently needed. Overcoming this limitation would facilitate rigorous testing of the proposed predictions for the functional signature, advancing the eco-evolutionary understanding of endemism hotspots and refugia.
The parasite fauna of loaches (Cypriniformes: Cobitoidea), a group of small bottom-dwelling freshwater fishes with a mostly Eurasian distribution, remains a largely unknown quantity. Here we revise the taxonomy of tapeworms of the genus Proteocephalus Weinland, 1858 (Cestoda: Proteocephalidae) that had been found in loaches from the Palaearctic Region (Central Europe, Japan and Russia [Primorsky Region]). Molecular phylogenetic analysis based on two nuclear (ssr- and lsrDNA) and two mitochondrial genes (cox1 and rrnL) revealed a monophyletic group consisting of four valid species nesting within the Proteocephalus-aggregate: (i) Proteocephalus sagittus (Grimm, 1872) from Barbatula barbatula (Europe, Russia and Tajikistan), (ii) Proteocephalus demshini n. sp. from Barbatula toni (Russian Far East - Primorsky Region), (iii) Proteocephalus midoriensis Shimazu, 1990 from Lefua echigonia (Japan) and L. costata (Russia) (new host and geographical record), and (iv) Proteocephalus misgurni n. sp. from Misgurnus anguillicaudatus (Russia; Primorsky Region). Proteocephalus sagittus and P. demshini, and P. midoriensis and P. misgurni were recovered as sister taxa, respectively. Proteocephalus sagittus and P. demshini are characterized by having proglottids that are wider than long, an elongate to pyriform cirrus-sac and the vitelline follicles that form wide lateral bands. Proteocephalus midoriensis and P. misgurni are characterized by having proglottids that are more elongate and an ovoid to almost spherical cirrus-sac and the vitelline follicles forming narrow lateral bands. Proteocephalus demshini differs from P. sagittus in the posterolateral extent of the vitelline follicles, whereas P. misgurni can be distinguished from P. midoriensis mainly by the relative size of the ovary, posterior extent of the vitelline follicles and width of the scolex. Unlike most species of the Proteocephalus-aggregate that possess an apical sucker, all species from loaches are devoid of any apical organ. The existence of two new species in loaches from the Primorsky Region of Russia indicates high endemism of fish parasites in this region. A key to the identification of recognized species from loaches is provided.
- MeSH
- Cestoda anatomie a histologie klasifikace genetika izolace a purifikace MeSH
- cestodózy epidemiologie parazitologie veterinární MeSH
- endemické nemoci veterinární MeSH
- fylogeneze MeSH
- máloostní parazitologie MeSH
- mitochondriální DNA genetika MeSH
- nemoci ryb epidemiologie parazitologie MeSH
- RNA ribozomální 16S MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Dálný východ epidemiologie MeSH
The extreme biological diversity of Oceanian archipelagos has long stimulated research in ecology and evolution. However, parasitic protists in this geographic area remained neglected and no molecular analyses have been carried out to understand the evolutionary patterns and relationships with their hosts. Papua New Guinea (PNG) is a biodiversity hotspot containing over 5% of the world's biodiversity in less than 0.5% of the total land area. In the current work, we examined insect heteropteran hosts collected in PNG for the presence of trypanosomatid parasites. The diversity of insect flagellates was analysed, to our knowledge for the first time, east of Wallace's Line, one of the most distinct biogeographic boundaries of the world. Out of 907 investigated specimens from 138 species and 23 families of the true bugs collected in eight localities, 135 (15%) were infected by at least one trypanosomatid species. High species diversity of captured hosts correlated with high diversity of detected trypanosomatids. Of 46 trypanosomatid Typing Units documented in PNG, only eight were known from other geographic locations, while 38 TUs (~83%) have not been previously encountered. The widespread trypanosomatid TUs were found in both widely distributed and endemic/sub-endemic insects. Approximately one-third of the endemic trypanosomatid TUs were found in widely distributed hosts, while the remaining species were confined to endemic and sub-endemic insects. The TUs from PNG form clades with conspicuous host-parasite coevolutionary patterns, as well as those with a remarkable lack of this trait. In addition, our analysis revealed new members of the subfamilies Leishmaniinae and Strigomonadinae, potentially representing new genera of trypanosomatids.
- MeSH
- biodiverzita * MeSH
- biologická evoluce MeSH
- fylogeneze MeSH
- hmyz parazitologie MeSH
- interakce hostitele a parazita MeSH
- Trypanosomatina klasifikace genetika izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Papua Nová Guinea MeSH