Genome-Wide Association Study
Dotaz
Zobrazit nápovědu
Background: Despite the fact that the genetic basis of schizophrenia has been intensively studied for more than two decades, our contemporary knowledge in this field is rather fractional, and a substantial part of it is still missing. The aim of this review article is to sum up the data coming from genome‑wide association genetic studies in schizophrenia, and indicate prospective directions of further scientific endeavour. Methods: We searched the National Human Genome Research Institute’s Catalog of genome‑wide association studies for schizophrenia to identify all papers related to this topic. In consequence, we looked up the possible relevancy of these findings for etiology and pathogenesis of schizophrenia using the computer gene and PubMed databases. Results: Eighteen genome‑wide association studies in schizophrenia have been published till now, referring to fifty‑seven genes supposedly involved into schizophrenia’s etiopathogenesis. Most of these genes are related to neurodevelopment, neuroendocrinology, and immunology. Conclusions: It is reasonable to predict that complex studies of sufficiently large samples, involving detection of copy number variants and assessment of endophenotypes, will produce definitive discoveries of genetic risk factors for schizophrenia in the future.
Acute renal rejection is a major risk factor for chronic allograft dysfunction and long-term graft loss. We performed a genome-wide association study to detect loci associated with biopsy-proven acute T cell-mediated rejection occurring in the first year after renal transplantation. In a discovery cohort of 4127 European renal allograft recipients transplanted in eight European centers, we used a DNA pooling approach to compare 275 cases and 503 controls. In an independent replication cohort of 2765 patients transplanted in two European countries, we identified 313 cases and 531 controls, in whom we genotyped individually the most significant single nucleotide polymorphisms (SNPs) from the discovery cohort. In the discovery cohort, we found five candidate loci tagged by a number of contiguous SNPs (more than five) that was never reached in iterative in silico permutations of our experimental data. In the replication cohort, two loci remained significantly associated with acute rejection in both univariate and multivariate analysis. One locus encompasses PTPRO, coding for a receptor-type tyrosine kinase essential for B cell receptor signaling. The other locus involves ciliary gene CCDC67, in line with the emerging concept of a shared building design between the immune synapse and the primary cilium.
- MeSH
- akutní nemoc MeSH
- celogenomová asociační studie MeSH
- chronické selhání ledvin chirurgie MeSH
- dospělí MeSH
- genetické markery MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové supresorové proteiny genetika MeSH
- prognóza MeSH
- proteiny asociované s mikrotubuly genetika MeSH
- rejekce štěpu diagnóza etiologie genetika MeSH
- studie případů a kontrol MeSH
- transplantace ledvin škodlivé účinky MeSH
- tyrosinfosfatasy receptorového typu, třída 3 genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Despite considerable heritability, previous smaller genome-wide association studies (GWASs) have not identified any robust genetic risk factors for isolated dystonia. OBJECTIVE: The objective of this study was to perform a large-scale GWAS in a well-characterized, multicenter sample of >6000 individuals to identify genetic risk factors for isolated dystonia. METHODS: Array-based GWASs were performed on autosomes for 4303 dystonia participants and 2362 healthy control subjects of European ancestry with subgroup analysis based on age at onset, affected body regions, and a newly developed clinical score. Another 736 individuals were used for validation. RESULTS: This GWAS identified no common genome-wide significant loci that could be replicated despite sufficient power to detect meaningful effects. Power analyses imply that the effects of individual variants are likely very small. CONCLUSIONS: Moderate single-nucleotide polymorphism-based heritability indicates that common variants do not contribute to isolated dystonia in this cohort. Sequence-based GWASs (eg, by whole-genome sequencing) might help to better understand the genetic basis. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
- MeSH
- celogenomová asociační studie * MeSH
- dospělí MeSH
- dystonické poruchy genetika MeSH
- dystonie * genetika MeSH
- genetická predispozice k nemoci * genetika MeSH
- jednonukleotidový polymorfismus * genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- rizikové faktory MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
Importance: Lithium is a first-line mood stabilizer for the treatment of bipolar affective disorder (BPAD). However, the efficacy of lithium varies widely, with a nonresponse rate of up to 30%. Biological response markers are lacking. Genetic factors are thought to mediate treatment response to lithium, and there is a previously reported genetic overlap between BPAD and schizophrenia (SCZ). Objectives: To test whether a polygenic score for SCZ is associated with treatment response to lithium in BPAD and to explore the potential molecular underpinnings of this association. Design, Setting, and Participants: A total of 2586 patients with BPAD who had undergone lithium treatment were genotyped and assessed for long-term response to treatment between 2008 and 2013. Weighted SCZ polygenic scores were computed at different P value thresholds using summary statistics from an international multicenter genome-wide association study (GWAS) of 36 989 individuals with SCZ and genotype data from patients with BPAD from the Consortium on Lithium Genetics. For functional exploration, a cross-trait meta-GWAS and pathway analysis was performed, combining GWAS summary statistics on SCZ and response to treatment with lithium. Data analysis was performed from September 2016 to February 2017. Main Outcomes and Measures: Treatment response to lithium was defined on both the categorical and continuous scales using the Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder score. The effect measures include odds ratios and the proportion of variance explained. Results: Of the 2586 patients in the study (mean [SD] age, 47.2 [13.9] years), 1478 were women and 1108 were men. The polygenic score for SCZ was inversely associated with lithium treatment response in the categorical outcome, at a threshold P < 5 × 10-2. Patients with BPAD who had a low polygenic load for SCZ responded better to lithium, with odds ratios for lithium response ranging from 3.46 (95% CI, 1.42-8.41) at the first decile to 2.03 (95% CI, 0.86-4.81) at the ninth decile, compared with the patients in the 10th decile of SCZ risk. In the cross-trait meta-GWAS, 15 genetic loci that may have overlapping effects on lithium treatment response and susceptibility to SCZ were identified. Functional pathway and network analysis of these loci point to the HLA antigen complex and inflammatory cytokines. Conclusions and Relevance: This study provides evidence for a negative association between high genetic loading for SCZ and poor response to lithium in patients with BPAD. These results suggest the potential for translational research aimed at personalized prescribing of lithium.
- MeSH
- bipolární porucha farmakoterapie genetika MeSH
- celogenomová asociační studie * MeSH
- dospělí MeSH
- genetická zátěž MeSH
- genotyp MeSH
- HLA antigeny genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- lithiumkarbonát terapeutické užití MeSH
- multifaktoriální dědičnost genetika MeSH
- schizofrenie (psychologie) MeSH
- schizofrenie farmakoterapie genetika MeSH
- výsledek terapie MeSH
- zánět genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
- Research Support, N.I.H., Extramural MeSH
Banana (Musa sp.) is a vegetatively propagated, low fertility, potentially hybrid and polyploid crop. These qualities make the breeding and targeted genetic improvement of this crop a difficult and long process. The Genome-Wide Association Study (GWAS) approach is becoming widely used in crop plants and has proven efficient to detecting candidate genes for traits of interest, especially in cereals. GWAS has not been applied yet to a vegetatively propagated crop. However, successful GWAS in banana would considerably help unravel the genomic basis of traits of interest and therefore speed up this crop improvement. We present here a dedicated panel of 105 accessions of banana, freely available upon request, and their corresponding GBS data. A set of 5,544 highly reliable markers revealed high levels of admixture in most accessions, except for a subset of 33 individuals from Papua. A GWAS on the seedless phenotype was then successfully applied to the panel. By applying the Mixed Linear Model corrected for both kinship and structure as implemented in TASSEL, we detected 13 candidate genomic regions in which we found a number of genes potentially linked with the seedless phenotype (i.e. parthenocarpy combined with female sterility). An additional GWAS performed on the unstructured Papuan subset composed of 33 accessions confirmed six of these regions as candidate. Out of both sets of analyses, one strong candidate gene for female sterility, a putative orthologous gene to Histidine Kinase CKI1, was identified. The results presented here confirmed the feasibility and potential of GWAS when applied to small sets of banana accessions, at least for traits underpinned by a few loci. As phenotyping in banana is extremely space and time-consuming, this latest finding is of particular importance in the context of banana improvement.
- MeSH
- banánovník anatomie a histologie genetika MeSH
- celogenomová asociační studie MeSH
- chov MeSH
- DNA rostlinná genetika MeSH
- fenotyp MeSH
- genetické markery MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus MeSH
- rostlinné geny MeSH
- semena rostlinná genetika MeSH
- vazebná nerovnováha MeSH
- zemědělské plodiny anatomie a histologie genetika MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes. METHODS: We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided. RESULTS: We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P ≤ 1.3 × 10-5), the strongest associations were detected in five pathways and gene sets, including maturity-onset diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G protein-coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets. CONCLUSION: Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.
- MeSH
- celogenomová asociační studie metody MeSH
- duktální karcinom slinivky břišní genetika MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- nádory slinivky břišní genetika MeSH
- statistické modely MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
BACKGROUND AND OBJECTIVES: To investigate the genetic determinants of the most common type of antibody-mediated autoimmune encephalitis, anti-NMDA receptor (anti-NMDAR) encephalitis. METHODS: We performed a genome-wide association study in 178 patients with anti-NMDAR encephalitis and 590 healthy controls, followed by a colocalization analysis to identify putatively causal genes. RESULTS: We identified 2 independent risk loci harboring genome-wide significant variants (p < 5 × 10-8, OR ≥ 2.2), 1 on chromosome 15, harboring only the LRRK1 gene, and 1 on chromosome 11 centered on the ACP2 and NR1H3 genes in a larger region of high linkage disequilibrium. Colocalization signals with expression quantitative trait loci for different brain regions and immune cell types suggested ACP2, NR1H3, MADD, DDB2, and C11orf49 as putatively causal genes. The best candidate genes in each region are LRRK1, encoding leucine-rich repeat kinase 1, a protein involved in B-cell development, and NR1H3 liver X receptor alpha, a transcription factor whose activation inhibits inflammatory processes. DISCUSSION: This study provides evidence for relevant genetic determinants of antibody-mediated autoimmune encephalitides outside the human leukocyte antigen (HLA) region. The results suggest that future studies with larger sample sizes will successfully identify additional genetic determinants and contribute to the elucidation of the pathomechanism.
- MeSH
- celogenomová asociační studie * MeSH
- dospělí MeSH
- encefalitida s protilátkami proti NMDA receptorům genetika MeSH
- genetické lokusy MeSH
- lidé MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype1-3. To identify novel loci, we performed a genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. We identified 32 novel susceptibility loci (P < 5.0 × 10-8), 15 of which showed evidence for associations with at least one tumor feature (false discovery rate < 0.05). Five loci showed associations (P < 0.05) in opposite directions between luminal and non-luminal subtypes. In silico analyses showed that these five loci contained cell-specific enhancers that differed between normal luminal and basal mammary cells. The genetic correlations between five intrinsic-like subtypes ranged from 0.35 to 0.80. The proportion of genome-wide chip heritability explained by all known susceptibility loci was 54.2% for luminal A-like disease and 37.6% for triple-negative disease. The odds ratios of polygenic risk scores, which included 330 variants, for the highest 1% of quantiles compared with middle quantiles were 5.63 and 3.02 for luminal A-like and triple-negative disease, respectively. These findings provide an improved understanding of genetic predisposition to breast cancer subtypes and will inform the development of subtype-specific polygenic risk scores.
- MeSH
- celogenomová asociační studie * MeSH
- genetická predispozice k nemoci MeSH
- lidé MeSH
- mutace MeSH
- nádory prsu genetika patologie MeSH
- protein BRCA1 genetika MeSH
- studie případů a kontrol MeSH
- triple-negativní karcinom prsu genetika patologie MeSH
- vazebná nerovnováha MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
Gout is a chronic disease that is caused by an innate immune response to deposited monosodium urate crystals in the setting of hyperuricemia. Here, we provide insights into the molecular mechanism of the poorly understood inflammatory component of gout from a genome-wide association study (GWAS) of 2.6 million people, including 120,295 people with prevalent gout. We detected 377 loci and 410 genetically independent signals (149 previously unreported loci in urate and gout). An additional 65 loci with signals in urate (from a GWAS of 630,117 individuals) but not gout were identified. A prioritization scheme identified candidate genes in the inflammatory process of gout, including genes involved in epigenetic remodeling, cell osmolarity and regulation of NOD-like receptor protein 3 (NLRP3) inflammasome activity. Mendelian randomization analysis provided evidence for a causal role of clonal hematopoiesis of indeterminate potential in gout. Our study identifies candidate genes and molecular processes in the inflammatory pathogenesis of gout suitable for follow-up studies.
- MeSH
- celogenomová asociační studie * MeSH
- dna (nemoc) * genetika MeSH
- genetická predispozice k nemoci * MeSH
- hyperurikemie genetika MeSH
- jednonukleotidový polymorfismus * MeSH
- kyselina močová * MeSH
- lidé MeSH
- mendelovská randomizace MeSH
- protein NLRP3 genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.
- MeSH
- Asijci genetika MeSH
- běloši genetika MeSH
- celogenomová asociační studie MeSH
- jaderné proteiny genetika MeSH
- jednonukleotidový polymorfismus MeSH
- kalcineurin genetika MeSH
- kulinové proteiny genetika MeSH
- lidé MeSH
- mentální anorexie genetika MeSH
- metaanalýza jako téma MeSH
- studie případů a kontrol MeSH
- transportní proteiny genetika MeSH
- výměnné faktory guaninnukleotidů genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Japonsko MeSH