Reversed-phase column
Dotaz
Zobrazit nápovědu
We synthesized 8 polymethacrylate monolithic capillary columns using laurylmethacrylate functional monomer and various cross-linking monomers differing in the polarity and size. The efficiency of monolithic columns for low-molecular compounds significantly improved with increasing number of repeat non-polar methylene groups in the cross-linker molecules, correlating with greater proportion of small pores with size less than 50 nm. The best efficiency with HETP=25 μm for alkylbenzenes was achieved for columns prepared using hexamethylene dimethacrylate (HEDMA). Columns prepared with polar (poly)oxyethylene dimethacrylate cross-linkers show also improved efficiency with increasing chain length and generally better performance in comparison to the (poly)methylene dimethacrylate cross-linkers of comparable size, however with less apparent effects of the chain lengths on the pore distribution. The monolithic columns prepared with tetraoxyethylene dimethacrylate (TeEDMA) showed the best efficiency of all the columns tested, corresponding to HETP=15 μm (approx. 70,000 theoretical plates/m), show excellent column-to-column reproducibility with standard deviations of 2.5% in retention times, good permeability and low mass transfer resistance, so that is suitable for fast separation of low-molecular compounds in 2 min or less. By modification of the fused-silica capillary inner walls pre-treatment procedure, very good long-term stability was achieved even in 0.5 mm i.d. capillary format. The TeEDMA column can be also used for size-exclusion chromatography of lower non-polar synthetic polymers, whereas it is less suitable for separations of proteins than the HEDMA column.
- MeSH
- benzenové deriváty izolace a purifikace MeSH
- chromatografie s reverzní fází přístrojové vybavení MeSH
- kyseliny polymethakrylové chemie MeSH
- polymerizace MeSH
- poréznost MeSH
- proteiny izolace a purifikace MeSH
- reagencia zkříženě vázaná chemie MeSH
- reprodukovatelnost výsledků MeSH
- skot MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this work, two mixed-mode columns from a different manufacturers and one marketed as a reversed-phase column were characterized and compared in the terms of their interaction abilities, retentivity, peak symmetry, and applicability for peptide separation. All the tested columns contain octadecyl ligand and positively charged modifier, i.e. pyridyl group for the reversed-phase column XSelect CSH C18, quaternary alkylamine for mixed-mode column Atlantis PREMIER BEH C18 AX, and permanently charged moiety (details not available from the manufacturer) for mixed-mode column Luna Omega PS C18. For detailed characterization and comparison of their interaction potential, several approaches were used. First, a simple Walters test was performed to estimate hydrophobic and silanophilic interactions of the tested columns. The highest values of both parameters were observed for column Atlantis PREMIER BEH C18 AX. To investigate the effect of pH and buffer concentration on retention, mobile phases composed of acetonitrile and buffer (ammonium formate, pH 3.0; ammonium acetate pH 4.7 and pH 6.9) in various concentrations (5mM; 10mM; 15mM and 20mM) were used. The analysis of permanently charged compounds was used to describe the electrostatic interaction abilities of the stationary phases. The most significant contribution of electrostatic interactions to the retention was observed for Atlantis PREMIER BEH C18 AX column in the mobile phase with buffer of pH 3.0. A set of ten dipeptides, three pentapeptides and one octapeptide was used to investigate the effects of pH and buffer concentration on retention and peak symmetry. Each of the tested columns provides the optimal peak shape under different buffer pH and concentration. The gradient separation of the 14 tested peptides was used to verify the application potential of the tested columns for peptide separation. The best separation was achieved within 4 minutes on column Atlantis PREMIER BEH C18 AX.
Correct adjustment of the mobile phase is equally important as the selection of the appropriate column for the separation of polar compounds in LC. Both solvophobic and selective polar interactions control the retention in the Reversed Phase and Hydrophilic Interaction modes. The retention models describing the effects of the volume fraction of the strong eluent component in binary mobile phases on the sample retention factors apply in a limited mobile phase composition range. We introduced a three-parameter retention model, which provides improved prediction of retention over a broad mobile phase range, under isocratic and gradient elution conditions. The model does not imply any assumptions concerning either adsorption or partition distribution mechanism, but allows estimating retention in pure strong and in pure weak mobile phase components. The experimental retention data for phenolic acids and flavones on several core-shell columns with different types of stationary phases agree with the theory. Many polar columns with important structural hydrophobic moieties show dual retention mechanism, (Reversed Phase in water rich mobile phases and Hydrophilic Interaction at high acetonitrile concentrations). It is possible to select the mobile phase compositions in each of the two modes for separations of samples containing compounds largely differing in polarity. The three-parameter model describes the retention in each mode, with separately determined best-fit parameters. We applied the two-mode model to the retention data of sulfonamides and benzoic acid related compounds on a new polymethacrylate zwitterionic monolithic micro-column.
The ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC/MS) method was optimized and validated for the determination of oxylipins in human plasma using the targeted approach with selected reaction monitoring (SRM) in the negative-ion electrospray ionization (ESI) mode. Reversed phase UHPLC separation on an octadecylsilica column enabled the analysis of 63 oxylipins including numerous isomeric species within 12-min run time. The method was validated (calibration curve, linearity, limit of detection, limit of quantification, carry-over, precision, accuracy, recovery rate, and matrix effect) and applied to 40 human female plasma samples from breast cancer patients and age-matched healthy volunteers (control). Thirty-six oxylipins were detected in human plasma with concentrations above the limit of detection, and 21 of them were quantified with concentrations above the limit of quantitation. The concentrations determined in healthy controls are in a good agreement with previously reported data on human plasma. Quantitative data were statistically evaluated by multivariate data analysis (MDA) methods including principal component analysis (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA). S-plot and box plots showed that 13-HODE, 9-HODE, 13-HOTrE, 9-HOTrE, and 12-HHTrE were the most upregulated oxylipin species in plasma of breast cancer patients.
- MeSH
- analýza hlavních komponent MeSH
- chromatografie s reverzní fází metody MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací metody MeSH
- lidé MeSH
- limita detekce MeSH
- multivariační analýza MeSH
- nádory prsu krev MeSH
- oxylipiny krev MeSH
- reprodukovatelnost výsledků MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
The effects of mobile phase composition and of temperature on the retention behavior of phenolic acids were studied on 4 hydrosilated (type C silica) based columns in buffered aqueous acetonitrile, both in the aqueous normal phase (HILIC) and in the reversed-phase mobile phase range. The UDC cholesterol and the C₁₈ bidentate columns show significant reversed phase and normal-phase retention mechanisms, whereas very weak retention in the reversed-phase mode was observed on the silica hydride and the Diamond hydride columns. The concentration effects of the aqueous acetate buffer over the full mobile phase (HILIC and RP) composition range can be described by a simple four-parameter equation. At increasing temperature, the retention times and peak widths decrease both in the aqueous normal phase and in the reversed phase mobile phase range. Linear van't Hoff log k versus 1/T plots were observed, indicating a single retention mechanism predominating in the highly organic (HILIC), like in highly aqueous (RP) mobile phase ranges. Besides the type of the stationary phase, the separation selectivity of phenolic acids strongly depends on temperature and on the mobile phase composition. From among the 4 hydrosilated columns compared in this work, the UDC cholesterol column has high temperature stability (up to 100 °C) and is most suitable for selective and efficient separations of phenolic acids both in the HILIC and in the RP modes.
- MeSH
- acetonitrily chemie MeSH
- cholesterol chemie MeSH
- chromatografie kapalinová přístrojové vybavení metody MeSH
- chromatografie s reverzní fází MeSH
- hydrofobní a hydrofilní interakce MeSH
- hydroxybenzoáty izolace a purifikace MeSH
- oxid křemičitý chemie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hydrophilic interaction liquid chromatography on polar columns in aqueous-organic mobile phases has become increasingly popular for the separation of many biologically important compounds in chemical, environmental, food, toxicological, and other samples. In spite of many new applications appearing in literature, the retention mechanism is still controversial. This review addresses recent progress in understanding of the retention models in hydrophilic interaction liquid chromatography. The main attention is focused on the role of water, both adsorbed by the column and contained in the bulk mobile phase. Further, the theoretical retention models in the isocratic and gradient elution modes are discussed. The dual hydrophilic interaction liquid chromatography reversed-phase retention mechanism on polar columns is treated in detail, especially with respect to the practical use in one- and two-dimensional liquid chromatography separations.
- MeSH
- chromatografie kapalinová metody MeSH
- chromatografie s reverzní fází metody MeSH
- difuze MeSH
- hydrofobní a hydrofilní interakce MeSH
- indikátory a reagencie MeSH
- ionty MeSH
- lineární modely MeSH
- organické látky MeSH
- oxid křemičitý MeSH
- polymery chemie MeSH
- rozpouštědla MeSH
- statická elektřina MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Analysis of glycosylation is challenging due to micro- and macro-heterogeneity of the protein attachment. A combination of LC with MS/MS is one of the most powerful tools for glycopeptide analysis. In this work, we show the effect of various monosaccharide units on the retention time of glycopeptides. Retention behavior of several glycoforms of six peptides obtained from tryptic digest of haptoglobin, hemopexin, and sex hormone-binding globulin was studied on a reversed phase chromatographic column. We observed reduction of the retention time with increasing number of monosaccharide units of glycans attached to the same peptide backbone. Fucosylation of larger glycans provides less significant retention time shift than for smaller ones. Retention times of glycopeptides were expressed as relative retention times. These relative retention times were used for calculation of upper and lower limits of glycopeptide retention time windows under the reversed phase conditions. We then demonstrated on the case of a glycopeptide of haptoglobin that the predicted retention time window boosts confidence of identification and minimizes false-positive identification. Relative retention time, as a qualitative parameter, is expected to improve LC-MS/MS characterization of glycopeptides.
- MeSH
- chromatografie s reverzní fází metody MeSH
- glykopeptidy krev chemie metabolismus MeSH
- glykosylace MeSH
- lidé MeSH
- nanotechnologie metody MeSH
- peptidové fragmenty analýza chemie metabolismus MeSH
- proteomika MeSH
- senzitivita a specificita MeSH
- trypsin metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The performance of the current bottom-up liquid chromatography hyphenated with mass spectrometry (LC-MS) analyses has undoubtedly been fueled by spectacular progress in mass spectrometry. It is thus not surprising that the MS instrument attracts the most attention during LC-MS method development, whereas optimizing conditions for peptide separation using reversed-phase liquid chromatography (RPLC) remains somewhat in its shadow. Consequently, the wisdom of the fundaments of chromatography is slowly vanishing from some laboratories. However, the full potential of advanced MS instruments cannot be achieved without highly efficient RPLC. This is impossible to attain without understanding fundamental processes in the chromatographic system and the properties of peptides important for their chromatographic behavior. We wrote this tutorial intending to give practitioners an overview of critical aspects of peptide separation using RPLC to facilitate setting the LC parameters so that they can leverage the full capabilities of their MS instruments. After briefly introducing the gradient separation of peptides, we discuss their properties that affect the quality of LC-MS chromatograms the most. Next, we address the in-column and extra-column broadening. The last section is devoted to key parameters of LC-MS methods. We also extracted trends in practice from recent bottom-up proteomics studies and correlated them with the current knowledge on peptide RPLC separation.
Due to dramatic effects of even small changes in mobile phase composition on the retention, separations of high-molecular compounds are very difficult, if possible at all, at isocratic conditions and need gradient elution. The theory of gradient elution for small molecules is well established, however its applications to reversed-phase gradient separations of biopolymers are not straightforward because of specific problems, such as slow diffusion, limited accessibility of the stationary phase for larger molecules, or possible sample conformation changes during the elution. Theoretical prediction of gradient data needs the parameters of model retention equations to be known, which however cannot be determined at isocratic conditions. The present work overviews the attempts at implementation of the conventional gradient theory developed for low-molecular compounds to the description and prediction of gradient separations of peptides and proteins on various types of HPLC columns: conventional analytical columns packed with wide-pore fully porous, fused-core superficially porous and non-porous particles; silica-based monolithic columns and organic-polymer poly(alkylmethacrylate) and poly(styrene-divinylbenzene) monolithic columns in capillary and disc formats. The attention is focused on the determination of the parameters necessary to predict gradient retention times (volumes) and bandwidths using the theoretical model equations. The accuracy of the prediction of protein retention on totally porous columns improves if size exclusion effect is taken into account, but this is not necessary with non-porous or superficially porous particles. Band dispersion effects counteracting band compression in gradient elution depend on the type of column, on the protein and on the gradient volume (steepness) and complicate the prediction of band broadening in gradient chromatography of proteins, however the conventional gradient model can be employed to estimate the effects of changing gradient parameters on the bandwidths, as well as on the elution times (volumes) of proteins.
Glycoproteomics is a challenging branch of proteomics because of the micro- and macro-heterogeneity of protein glycosylation. Hydrophilic interaction liquid chromatography (HILIC) is an advantageous alternative to reversed-phase chromatography for intact glycopeptide separation prior to their identification by mass spectrometry. Nowadays, several HILIC columns differing in used chemistries are commercially available. However, there is a lack of comparative studies assessing their performance, and thus providing guidance for the selection of an adequate stationary phase for different glycoproteomics applications. Here, we compare three HILIC columns recently developed by Advanced Chromatography Technologies (ACE)- with unfunctionalized (HILIC-A), polyhydroxy functionalized (HILIC-N), and aminopropyl functionalized (HILIC-B) silica- with a C18 reversed-phase column in the separation of human immunoglobulin G glycopeptides. HILIC-A and HILIC-B exhibit mixed-mode separation combining hydrophilic and ion-exchange interactions for analyte retention. Expectably, reversed-phase mode successfully separated clusters of immunoglobulin G1 and immunoglobulin G2 glycopeptides, which differ in amino acid sequence, but was not able to adequately separate different glycoforms of the same peptide. All ACE HILIC columns showed higher separation power for different glycoforms, and we show that each column separates a different group of glycopeptides more effectively than the others. Moreover, HILIC-A and HILIC-N columns separated the isobaric A2G1F1 glycopeptides of immunoglobulin G, and thus showed the potential for the elucidation of the structure of isomeric glycoforms. Furthermore, the possible retention mechanism for the HILIC columns is discussed on the basis of the determined chromatographic parameters.
- MeSH
- chromatografie iontoměničová metody MeSH
- chromatografie s reverzní fází metody MeSH
- glykopeptidy izolace a purifikace MeSH
- hydrofobní a hydrofilní interakce MeSH
- imunoglobulin G izolace a purifikace MeSH
- isomerie MeSH
- lidé MeSH
- proteomika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH