Nitro-fatty acids (NO2FAs) are endogenously produced electrophiles and NRF2 activators with therapeutic potential. We developed a synthetic protocol combining a Henry reaction and base-promoted β-elimination, yielding ultrapure regio/stereoisomers of nitro-stearic (NO2SA), nitro-oleic (NO2OA), and conjugated/bis-allylic nitro-linoleic (NO2LA) acids. These were tested for NRF2 pathway activation in bone marrow cells under different oxygen conditions. We observed that 9- and 10-NO2OA, and 10-NO2LA increased NRF2 stabilization under hypoxia, while 9- and 10-NO2OA significantly upregulated Hmox1 and Gclm at all oxygen levels. 9- and 10-NO2OA enhanced HO-1 and GCLM proteins independently of oxygen, while 10-NO2LA was oxygen-dependent, boosting HO-1 under hypoxia and GCLM under ambient conditions. Moreover, 10-NO2OA and 10-NO2LA induced NRF2 nuclear translocation. In contrast, the saturated 10-NO2SA, which has lower electron-acceptor ability, was inactive. In summary, these findings suggest the biological activity of NO2FAs is dependent on oxygen level, which could be used in future research of other oxidative stress-dependent pathways.
- MeSH
- Nitro Compounds * pharmacology chemical synthesis chemistry MeSH
- NF-E2-Related Factor 2 * metabolism MeSH
- Heme Oxygenase-1 metabolism MeSH
- Cell Hypoxia MeSH
- Linoleic Acids chemical synthesis chemistry pharmacology MeSH
- Oxygen metabolism MeSH
- Fatty Acids * pharmacology chemical synthesis chemistry MeSH
- Mice MeSH
- Signal Transduction drug effects MeSH
- Stereoisomerism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Epitranscriptomics, the study of RNA modifications such as N6-methyladenosine (m6A), provides a novel layer of gene expression regulation with implications for numerous biological processes, including cellular adaptation to hypoxia. Hypoxia-inducible factor-1 (HIF-1), a master regulator of the cellular response to low oxygen, plays a critical role in adaptive and pathological processes, including cancer, ischemic heart disease, and metabolic disorders. Recent discoveries accent the dynamic interplay between m6A modifications and HIF-1 signaling, revealing a complex bidirectional regulatory network. While the roles of other RNA modifications in HIF-1 regulation remain largely unexplored, emerging evidence suggests their potential significance. MAIN BODY: This review examines the reciprocal regulation between HIF-1 and epitranscriptomic machinery, including m6A writers, readers, and erasers. HIF-1 modulates the expression of key m6A components, while its own mRNA is regulated by m6A modifications, positioning HIF-1 as both a regulator and a target in this system. This interaction enhances our understanding of cellular hypoxic responses and opens avenues for clinical applications in treating conditions like cancer and ischemic heart disease. Promising progress has been made in developing selective inhibitors targeting the m6A-HIF-1 regulatory axis. However, challenges such as off-target effects and the complexity of RNA modification dynamics remain significant barriers to clinical translation. CONCLUSION: The intricate interplay between m6A and HIF-1 highlights the critical role of epitranscriptomics in hypoxia-driven processes. Further research into these regulatory networks could drive therapeutic innovation in cancer, ischemic heart disease, and other hypoxia-related conditions. Overcoming challenges in specificity and off-target effects will be essential for realizing the potential of these emerging therapies.
- MeSH
- Adenosine analogs & derivatives metabolism MeSH
- Epigenesis, Genetic * MeSH
- Hypoxia-Inducible Factor 1 * metabolism genetics MeSH
- Humans MeSH
- RNA Processing, Post-Transcriptional MeSH
- Gene Expression Regulation MeSH
- Signal Transduction MeSH
- Transcriptome MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Srdeční infarkt je závažný stav definovaný jako nekróza části srdečních buněk (kardiomyocytů) s klinickými známkami akutní ischemie myokardu. Většinou je charakterizován rupturou aterosklerotického plátu, ulcerací, fisurou nebo erozí s výsledným intraluminálním trombem v jedné nebo více koronárních tepnách. Srdeční infarkt bývá spojován s vyšším věkem a u mladých pacientů se na tuto diagnózu často nemyslí. Cílem sdělení je poukázat na výskyt akutního infarktu myokardu (AIM) u mladých jedinců. Rádi bychom demonstrovali závažnost problematiky diagnostiky AIM u mladých nemocných na kazuistice muže věku 36 let s pozitivní rodinnou anamnézou. Na naše pracoviště byl přivezen za kontinuální resuscitace zevním masážním systémem Lucas pro refrakterní srdeční zástavu s obrazem bezpulzové aktivity. Resuscitace byla nakonec úspěšná, k obnově spontánního oběhu došlo v 85. minutě. Následně byl na EKG obraz infarktu myokardu s ST elevacemi přední stěny. Akutní koronarografie potvrdila proximální uzávěr ramus interventricularis anterior, byla provedena balónková angioplastika s implantací stentu. Tento mladý muž opustil naše oddělení po 21 dnech s malým neurologickým deficitem (porucha krátkodobé paměti). Prevalence srdečního infarktu stoupá s věkem, ale může se vyvinout a ohrožovat život i u mladých jedinců. Proto je třeba na tuto diagnózu myslet také u mladších pacientů s námahovými bolestmi na hrudi nebo v zádech.
A heart attack is a serious condition, defined as the death of a portion of cardiac muscle cells. It is typically caused by a sudden blockage or significant narrowing of a coronary artery that supplies the affected region. Although heart attacks are often associated with older individuals, they can also occur in the young. The aim of this paper is to shed light on the incidence of acute myocardial infarction (AMI) in younger populations. Through the case study of a 36year-old male with a familial history of heart conditions, we aim to highlight the critical nature of early AMI diagnosis in young individuals. He was admitted to our department while undergoing continuous resuscitation using the Lucas external chest compression system, following a refractory cardiac arrest characterized by pulseless electrical activity. Resuscitation proved successful, with spontaneous circulation restored after 85 minutes. A subsequent ECG revealed an ST elevation myocardial infarction of the anterior wall. Acute coronary angiography identified a proximal blockage in the ramus interventricularis anterior, which was then treated with balloon angioplasty and stent implantation. Twenty-one days later, the young patient was discharged with a mild impairment in short-term memory. While the prevalence of myocardial infarction increases with age, it is imperative to recognize that younger individuals are not immune. Therefore, healthcare professionals must consider AMI as a potential diagnosis in younger patients presenting with exertional chest or back pain.
- MeSH
- Angioplasty, Balloon, Coronary MeSH
- Adult MeSH
- Echocardiography MeSH
- Anterior Wall Myocardial Infarction diagnosis therapy MeSH
- ST Elevation Myocardial Infarction diagnosis therapy MeSH
- Myocardial Infarction * diagnosis therapy MeSH
- Humans MeSH
- Hypoxia-Ischemia, Brain MeSH
- Rehabilitation MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Case Reports MeSH
BACKGROUND: Human embryonic stem cells (hESCs) have the unique ability to differentiate into any cell type in the human body and to proliferate indefinitely. Cell therapies involving hESC have shown very promising results for the treatment of certain diseases and confirmed the safety of hESC-derived cells for humans. They are used in cell therapy, mainly in targeted therapy of diseases that are currently incurable. OBJECTIVES: The aim of this study was the derivation of clinical-grade hESCs usable in drug development, non-native medicine and cell therapy. MATERIAL AND METHODS: Embryos were thawed, cultivated to the blastocyst stage if necessary, and assisted hatching was subsequently performed. Embryoblasts were mechanically isolated using narrow needles. Each line was kept as a separate batch. The derived hESCs were cultured under hypoxic culture conditions (5% O2, 5% CO2, 37°C) in a NutriStem® hPSC XF Medium with a daily medium change. RESULTS: From January 2018 to July 2020, 138 selected clients were asked for consent to donate embryos, of whom 52 did not respond, 19 terminated the storage of their embryos and 29 extended the storage. Only 38 clients (27.5%) agreed to donate embryos for the derivation of hESCs. At the same time, personal communication with clients took place and another 17 embryo donors were recruited. A total of 160 embryos from 55 donors aged 26-42 years were collected. The embryos were frozen at the blastocyst (33.1%) or morula (46.3%) stage. After the preparation of 64 embryos, embryoblasts were isolated and cultured. Finally, 7 hESC lines were obtained, 4 research-grade and 3 clinical-grade, the first in the Czech Republic. CONCLUSIONS: We established a current good manufacturing practice (cGMP)-defined xeno-free and feeder-free system for the derivation, culture and banking of clinical-grade hESC lines that are suitable for preclinical and clinical trials. The quality control testing with criteria concerning sterility, safety and characterization according to cGMP ensured the clinical-grade quality of hESC lines.
- MeSH
- Cell Line MeSH
- Embryo, Mammalian MeSH
- Embryonic Stem Cells * MeSH
- Quality of Life * MeSH
- Humans MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
... Fleming -- 31 Pharmacology of the Cardiovascular System 300 -- Naomi B. Bishop, Bruce M. ... ... Arvedson -- 41 Structure and Development of the Lower Respiratory System 462 -- John E. ... ... Ryan -- 42 Physiology of the Respiratory System 470 -- Robinder G. Khemani and Justin C. ... ... Tasker -- 65 Hypoxic-Ischemic Encephalopathy 793 -- Ericka L. Fink, Mioara Manole, Robert S.B. ... ... Infections and Related Conditions 823 -- Kevin M. ...
Sixth edition xxxi, 1671 stran : ilustrace, tabulky ; 28 cm
- MeSH
- Child MeSH
- Critical Care MeSH
- Emergency Treatment MeSH
- Check Tag
- Child MeSH
- Conspectus
- Pediatrie
- NML Fields
- pediatrie
- urgentní lékařství
- NML Publication type
- kolektivní monografie
Introduction: Metastatic cutaneous squamous cell carcinoma (cSCC) is a very rare condition. The lack of definition of an oligometastatic subgroup means that there is no consensus for its treatment, unlike the mucosal head and neck counterpart. Like the latter, the cutaneous form is able to develop bulky tumor masses. When this happens, the classic care approach is just for palliative intent due to a likely unfavorable benefit-risk balance typical of aggressive treatments. Here we proposed a novel radiotherapy (RT) technique to treat bulky metastases from cSCC in the context of an overall limited tumor burden and tried to explain its clinical outcome by the currently available mathematical radiobiological and ad hoc developed models. Methods: We treated a case of facial cSCC with three metastases: two of them by classic stereotactic RT and the other by lattice RT supported by metabolic imaging (18F-FDG PET) due to its excessively large dimensions. For the latter lesion, we compared four treatment plans with different RT techniques in order to define the best approach in terms of normal tissue complication probability (NTCP) and tumor control probability (TCP). Moreover, we developed an ad hoc mathematical radiobiological model that could fit better with the characteristics of heterogeneity of this bulky metastasis for which, indeed, a segmentation of normoxic, hypoxic, and necrotic subvolumes might have been assumed. Results: We observed a clinical complete response in all three disease sites; the bulky metastasis actually regressed more rapidly than the other two treated by stereotactic RT. For the large lesion, NTCP predictions were good for all four different plans but even significantly better for the lattice RT plan. Neither the classic TCP nor the ad hoc developed radiobiological models could be totally adequate to explain the reported outcome. This finding might support a key role of the host immune system. Conclusions: PET-guided lattice RT might be safe and effective for the treatment of bulky lesions from cSCC. There might be some need for complex mathematical radiobiological models that are able to take into account any immune system's role in order to explain the possible mechanisms of the tumor response to radiation and the relevant key points to enhance it.
- Publication type
- Journal Article MeSH
Akutní hypoxemické respirační selhání (které se vyskytuje i při závažném průběhu onemocnění COVID-19) vyžaduje kyslí kovou léčbu. Invazivita a intenzita zvolené terapie odpovídá stavu pacienta a dostupným technickým prostředkům. Pokud dojde k náhlému výskytu velikého počtu nemocných s hypoxickým selháním, může být dostupná materiální a/nebo lidská kapacita pro poskytování účinné kyslíkové terapie přetížena. Cílem našeho experimentu bylo otestovat funkčnost Venturiho trysky Corovalve, kterou jsme navrhli a vytiskli na 3D tis kárně. Trysku jsme vřadili do jednoduchého systému, který jsme zkompletovali z dílů běžně dostupných v České republice. Toto zařízení jsme odzkoušeli ve statickém testu a v dynamickém testu sami na sobě a změřili jeho základní parametry. V provedeném experimentu generovalo naše zařízení při spontánní ventilaci pozitivní hodnotu středního tlaku v dýchacích cestách. Při vyšších průtocích byl systém schopný udržet mírný pozitivní tlak i během inspiria, můžeme tedy mluvit o systému, který za určitých podmínek umožňuje spontánní ventilaci při kontinuálním přetlaku. Nejefektivnějším nastavením během spontánní ventilace byl příkon kyslíku 15 l/min v kombinaci s nastavením PEEP ventilu na 10–15 cm H2O. Při těchto parametrech byl generován střední tlak v dýchacích cestách 9–12 cm H2O při výsledné koncentraci kyslíku ve vdechované směsi 41–42 %. Výsledky našeho experimentu dokládají, že s pomocí trysky Corovalve vytištěné na 3D tiskárně je možné sestrojit jedno duché zařízení umožňující aplikaci kyslíku přetlakem EPAP/CPAP. Jedná se o metodu ekonomickou a jednoduše provedi telnou, a proto s poměrně zajímavým potenciálem. Při dostatečném počtu 3D vytištěných trysek by mohla být nasazena rychle a v masovém měřítku.
Acute hypoxemic respiratory failure (which occures also with severe course of COVID-19) requires oxygen therapy. The in vasiveness and intensity of chosen therapy corresponds with patient's condition and technical means available. If a large number of patients with hypoxic failure suddenly occur, the available equipment and/or human capacity to provide effective oxygen therapy may be greatly strained. The goal of our experiment was to test functionality of a simple device equipped with a Venturi nozzle Corovalve which we designed and printed on a 3D printer. We incorporated the nozzle into a system assembled from parts commonly available in the Czech Republic. We put this device through a static test and a dynamic test performed on ourselves and measured its basic parameters. In our experiment during spontaneous ventilation the device was able to generate positive mean airway pressure. At higher flow rates, the system was able to maintain a slightly positive pressure even during the inspiration, so we can talk about a system that allows, under certain circumstances, spontaneous ventilation at continuous positive airway pressure. The most effective from setting tested was oxygen input of 15 L/min combined with PEEP valve set to 10–15 cm H 2 O. Mean airway pressure ranged at 9–12 cm H 2 O and oxygen concentration in the inspiration mixture was 40–42%. We therefore conclude that our nozzle Corovalve printed on a 3D printer can be used in a simple device allowing positive pressure oxygen application during spontaneous ventilation EPAP/CPAP. It is economical and easy to provide method and therefore of a rather interesting potential. With a sufficient number of 3D printed nozzles it could be deployed quickly and on a mass scale.
Alterations in brain functioning, especially in regions associated with cognition, can result from infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and are predicted to result in various psychiatric diseases. Recent studies have shown that SARS-CoV-2 infection and coronavirus disease 2019 (COVID-19) can directly or indirectly affect the central nervous system (CNS). Therefore, diseases associated with sequelae of COVID-19, or 'long COVID', also include serious long-term mental and cognitive changes, including the condition recently termed 'brain fog'. Hypoxia in the microenvironment of select brain areas may benefit the reproductive capacity of the virus. It is possible that in areas of cerebral hypoxia, neuronal cell energy metabolism may become compromised after integration of the viral genome, resulting in mitochondrial dysfunction. Because of their need for constant high metabolism, cerebral tissues require an immediate and constant supply of oxygen. In hypoxic conditions, neurons with the highest oxygen demand become dysfunctional. The resulting cognitive impairment benefits viral spread, as infected individuals exhibit behaviors that reduce protection against infection. The effects of compromised mitochondrial function may also be an evolutionary advantage for SARS-CoV-2 in terms of host interaction. A high viral load in patients with COVID-19 that involves the CNS results in the compromise of neurons with high-level energy metabolism. Therefore, we propose that selective neuronal mitochondrial targeting in SARS-CoV-2 infection affects cognitive processes to induce 'brain fog' and results in behavioral changes that favor viral propagation. Cognitive changes associated with COVID-19 will have increasing significance for patient diagnosis, prognosis, and long-term care.
- MeSH
- COVID-19 complications metabolism physiopathology psychology transmission MeSH
- Energy Metabolism MeSH
- Cognitive Dysfunction metabolism physiopathology psychology MeSH
- Humans MeSH
- Microbial Viability MeSH
- Mitochondria metabolism MeSH
- Hypoxia, Brain metabolism physiopathology psychology MeSH
- Neurons metabolism MeSH
- Virus Replication MeSH
- SARS-CoV-2 physiology MeSH
- Viral Load MeSH
- Health Behavior * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Editorial MeSH
Stimulus-sensitive polymer drug conjugates based on high molecular weight N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers carrying doxorubicin via a pH-dependent cleavable bond (pHPMA-Dox) were previously shown to be able to overcome multi-drug resistance. Nevertheless, a tumor type dependent differential response was observed. Although an improved and more selective tumor accumulation of pHPMA-Dox is generally achieved due to the enhanced permeability and retention (EPR) effect, little is known about the fate of these conjugates upon entering the tumor tissue, which could explain the different responses. In this study, we compared in vitro and in vivo accumulation and Dox-activation of pHPMA-Dox in three cancer cell line models (1411HP, A2780cis, HT29) and derived xenograft tumors using a near-infrared fluorescence-labeled pHPMA-Dox conjugate. Firstly, cytotoxicity assays using different pH conditions proved a stepwise, pH-dependent increase in cytotoxic activity and revealed comparable sensitivity among the cell lines. Using multispectral fluorescence microscopy, we were able to track the distribution of drug and polymeric carrier simultaneously on cellular and histological levels. Microscopic analyses of cell monolayers confirmed the assumed mechanism of cell internalization of the whole conjugate followed by intracellular cleavage and nuclear accumulation of Dox in all three cell lines. In contrast, intratumoral distribution and drug release in xenograft tumors were completely different and were associated with different tissue substructures and microenvironments analyzed by Azan- and Hypoxisense®-staining. In 1411HP tumors, large vessels and less hypoxic/acidic microenvironments were associated with a pattern resulting from consistent tissue distribution and cellular uptake as whole conjugate followed by intracellular drug release. In A2780cis tumors, an inconsistent pattern of distribution partly resulting from premature drug release was associated with a more hypoxic/acidic microenvironment, compacted tumor tissue with compressed vessels and specific pre-damaged tissue structures. A completely different distribution pattern was observed in HT29 tumors, resulting from high accumulation of polymer in abundant fibrotic structures, with small embedded vessels featuring this tumor type together with pronounced premature drug release due to the strongly hypoxic/acidic microenvironment. In conclusion, the pattern of intratumoral distribution and drug release strongly depends on the tumor substructure and microenvironment and may result in different degrees of therapeutic efficacy. This reflects the pronounced heterogeneity observed in the clinical application of nanomedicines and can be exploited for the future design of such conjugates.
- MeSH
- HT29 Cells MeSH
- Doxorubicin administration & dosage chemistry pharmacokinetics MeSH
- Fluorescent Dyes chemistry MeSH
- Carbocyanines chemistry MeSH
- Hydrogen-Ion Concentration MeSH
- Drug Delivery Systems MeSH
- Humans MeSH
- Methacrylates chemistry MeSH
- Molecular Weight MeSH
- Mice, Nude MeSH
- Cell Line, Tumor MeSH
- Tumor Microenvironment MeSH
- Drug Carriers administration & dosage chemistry pharmacokinetics MeSH
- Antineoplastic Agents administration & dosage chemistry pharmacokinetics MeSH
- Tissue Distribution MeSH
- Drug Liberation MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
In the early twenty-first century, societies around the world are facing the paradoxal epidemic development of PCa as a non-communicable disease. PCa is the most frequently diagnosed cancer for men in several countries such as the USA. Permanently improving diagnostics and treatments in the PCa management causes an impressive divergence between, on one hand, permanently increasing numbers of diagnosed PCa cases and, on the other hand, stable or even slightly decreasing mortality rates. Still, aspects listed below are waiting for innovate solutions in the context of predictive approaches, targeted prevention and personalisation of medical care (PPPM / 3PM).A.PCa belongs to the cancer types with the highest incidence worldwide. Corresponding economic burden is enormous. Moreover, the costs of treating PCa are currently increasing more quickly than those of any other cancer. Implementing individualised patient profiles and adapted treatment algorithms would make currently too heterogeneous landscape of PCa treatment costs more transparent providing clear "road map" for the cost saving.B.PCa is a systemic multi-factorial disease. Consequently, predictive diagnostics by liquid biopsy analysis is instrumental for the disease prediction, targeted prevention and curative treatments at early stages.C.The incidence of metastasising PCa is rapidly increasing particularly in younger populations. Exemplified by trends observed in the USA, prognosis is that the annual burden will increase by over 40% in 2025. To this end, one of the evident deficits is the reactive character of medical services currently provided to populations. Innovative screening programmes might be useful to identify persons in suboptimal health conditions before the clinical onset of metastasising PCa. Strong predisposition to systemic hypoxic conditions and ischemic lesions (e.g. characteristic for individuals with Flammer syndrome phenotype) and low-grade inflammation might be indicative for specific phenotyping and genotyping in metastasising PCa screening and disease management. Predictive liquid biopsy tests for CTC enumeration and their molecular characterisation are considered to be useful for secondary prevention of metastatic disease in PCa patients.D.Particular rapidly increasing PCa incidence rates are characteristic for adolescents and young adults aged 15-40 years. Patients with early onset prostate cancer pose unique challenges; multi-factorial risks for these trends are proposed. Consequently, multi-level diagnostics including phenotyping and multi-omics are considered to be the most appropriate tool for the risk assessment, prediction and prognosis. Accumulating evidence suggests that early onset prostate cancer is a distinct phenotype from both aetiological and clinical perspectives deserving particular attention from view point of 3P medical approaches.
- Publication type
- Journal Article MeSH
- Review MeSH