deep machine learning
Dotaz
Zobrazit nápovědu
Digitalizace laboratoří, aplikace big dat a automatizovaná strojová diagnostika ("machine learning") jsou nástroji pro vznik a fungování toho, co se označuje jako precizní medicína. Genomika, její dominantní metody (qPCR, dPCR, ddPCR, NGS), produkující obrovská kvanta dat (big data) a schopnosti počítačových systémů tyto soubory dat využívat v diagnostice a terapii za významného přispění "umělé inteligence" se označují jako strojová automatizovaná diagnostika - machine learning respektive deep learning). Tyto postupy pronikají z průmyslu a výzkumu do rutinní medicíny včetně medicíny laboratorní. Zvládnutí technických a personálních problémů těchto změn bude stát značné úsilí, srovnatelné s před lety realizovanou přeměnou manuální laboratorní práce na automatizovanou činnost a s přeměnou papírové dokumentace výsledků na laboratorní a nemocniční informační systémy. Lze předpokládat nejen zásadní změny metod laboratorní práce, ale i změny požadavků na odbornost personálu laboratoří a rovněž lze předpokládat nevyhnutelnost radikálního ovlivnění činnosti klinických laboratoří. Etický rozměr nastávajících změn bude stejně závažný, jako ten technický a bude možné očekávat nejen významný progres v diagnostice e prognostice chorob, ale i vzestup rizika zdravotní péče v případě chyb a neprofesionality. Automatická strojová aplikace big dat a používání umělé inteligence jsou náročné, je s nimi v medicíně málo zkušeností, ale vyhnout se jim nebude možné.
Digitalization of clinical laboratories, application of big data and methods of machine learning re contemporary tools for precision medicine. Precision medicine is based mainly on the genomic methods, namely of dominant PCR and NGS methods. These methods produces enormous number of dates (big data) and can be explored by means of artificial intelligence in processes called machine learning. Machine learning was primarily used in industry and research and now contemporary penetrates into medicine and also to laboratory medicine. Methods based on the big data and artificial intelligence with exploration of big data is certainly very important factor of future of medicine. It will be needs large requirements not only on high-technology equipment, but also for new type of young laboratory Professional used basically new methods of work and mind. Machine learning, part of precision medicine, necessary namely for oncology and prediction of patients state crettemeans also lot of new types of ethical problems. These ethical questions and problems should be soluted immediately, parallel with introduction of machine learning to laboratory practice.
Analysis of massive knowledge within the study of however life and drugs work along and health field has driven the requirement of recent effective analysis technology. Deep learning could be a powerful machine learning technique. With the providing of quick computer-based power improvement, it's turning into a promising method of doing things to form new data, clarification and gain understandings of deep things from high-throughout, cluster totally different of various things mixed along and sophisticated the study of however life and drugs work along knowledge from different sources, like X-rays, MRIs, etc., medicine-based study of the little chemical directions among cells, and electronic health records. This paper presents an outline of the utilization of deep learning approach within the study of however life and drugs work along IP. Initial we tend to introduce the event of synthetic brain-related network and deep learning, and then chiefly target the researches applying deep learning within the study of however life and drugs work along within the medical specialty IP field. We tend to additionally discuss the challenges for future improvement, like knowledge quality explains ability.
- MeSH
- deep learning * MeSH
- digitální zdraví MeSH
- lidé MeSH
- výpočetní biologie metody MeSH
- Check Tag
- lidé MeSH
Tým pracovníků Vysokého učení technického v Brně a Masarykovy univerzity vyvíjí webovou aplikaci, jejímž cílem je poskytovat terapeutům zpětnou vazbu na základě automatického zpracování pravidelně získávaných dotazníkových dat a audionahrávek z terapeutických sezení (z projektové zprávy).
An expert team from Brno University of Technology and Masaryk University is developing a web application to provide therapists with feedback based on automatic processing of regularly collected questionnaire data and audio recordings from therapy sessions (from project report).
Breast cancer survival prediction can have an extreme effect on selection of best treatment protocols. Many approaches such as statistical or machine learning models have been employed to predict the survival prospects of patients, but newer algorithms such as deep learning can be tested with the aim of improving the models and prediction accuracy. In this study, we used machine learning and deep learning approaches to predict breast cancer survival in 4,902 patient records from the University of Malaya Medical Centre Breast Cancer Registry. The results indicated that the multilayer perceptron (MLP), random forest (RF) and decision tree (DT) classifiers could predict survivorship, respectively, with 88.2 %, 83.3 % and 82.5 % accuracy in the tested samples. Support vector machine (SVM) came out to be lower with 80.5 %. In this study, tumour size turned out to be the most important feature for breast cancer survivability prediction. Both deep learning and machine learning methods produce desirable prediction accuracy, but other factors such as parameter configurations and data transformations affect the accuracy of the predictive model.
- MeSH
- analýza přežití MeSH
- deep learning * MeSH
- demografie MeSH
- dospělí MeSH
- kalibrace MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- nádory prsu mortalita MeSH
- neuronové sítě MeSH
- rozhodovací stromy MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- support vector machine MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Natural products represent a rich reservoir of small molecule drug candidates utilized as antimicrobial drugs, anticancer therapies, and immunomodulatory agents. These molecules are microbial secondary metabolites synthesized by co-localized genes termed Biosynthetic Gene Clusters (BGCs). The increase in full microbial genomes and similar resources has led to development of BGC prediction algorithms, although their precision and ability to identify novel BGC classes could be improved. Here we present a deep learning strategy (DeepBGC) that offers reduced false positive rates in BGC identification and an improved ability to extrapolate and identify novel BGC classes compared to existing machine-learning tools. We supplemented this with random forest classifiers that accurately predicted BGC product classes and potential chemical activity. Application of DeepBGC to bacterial genomes uncovered previously undetectable putative BGCs that may code for natural products with novel biologic activities. The improved accuracy and classification ability of DeepBGC represents a major addition to in-silico BGC identification.
Radiologists utilize pictures from X-rays, magnetic resonance imaging, or computed tomography scans to diagnose bone cancer. Manual methods are labor-intensive and may need specialized knowledge. As a result, creating an automated process for distinguishing between malignant and healthy bone is essential. Bones that have cancer have a different texture than bones in unaffected areas. Diagnosing hematological illnesses relies on correct labeling and categorizing nucleated cells in the bone marrow. However, timely diagnosis and treatment are hampered by pathologists' need to identify specimens, which can be sensitive and time-consuming manually. Humanity's ability to evaluate and identify these more complicated illnesses has significantly been bolstered by the development of artificial intelligence, particularly machine, and deep learning. Conversely, much research and development is needed to enhance cancer cell identification-and lower false alarm rates. We built a deep learning model for morphological analysis to solve this problem. This paper introduces a novel deep convolutional neural network architecture in which hybrid multi-objective and category-based optimization algorithms are used to optimize the hyperparameters adaptively. Using the processed cell pictures as input, the proposed model is then trained with an optimized attention-based multi-scale convolutional neural network to identify the kind of cancer cells in the bone marrow. Extensive experiments are run on publicly available datasets, with the results being measured and evaluated using a wide range of performance indicators. In contrast to deep learning models that have already been trained, the total accuracy of 99.7% was determined to be superior.
To identify patterns in big medical datasets and use Deep Learning and Machine Learning (ML) to reliably diagnose Cardio Vascular Disease (CVD), researchers are currently delving deeply into these fields. Training on large datasets and producing highly accurate validation results is exceedingly difficult. Furthermore, early and precise diagnosis is necessary due to the increased global prevalence of cardiovascular disease (CVD). However, the increasing complexity of healthcare datasets makes it challenging to detect feature connections and produce precise predictions. To address these issues, the Intelligent Cardiovascular Disease Diagnosis based on Ant Colony Optimisation with Enhanced Deep Learning (ICVD-ACOEDL) model was developed. This model employs feature selection (FS) and hyperparameter optimization to diagnose CVD. Applying a min-max scaler, medical data is first consistently prepared. The key feature that sets ICVD-ACOEDL apart is the use of Ant Colony Optimisation (ACO) to select an optimal feature subset, which in turn helps to upgrade the performance of the ensuring deep learning enhanced neural network (DLENN) classifier. The model reforms the hyperparameters of DLENN for CVD classification using Bayesian optimization. Comprehensive evaluations on benchmark medical datasets show that ICVD-ACOEDL exceeds existing techniques, indicating that it could have a significant impact on CVD diagnosis. The model furnishes a workable way to increase CVD classification efficiency and accuracy in real-world medical situations by incorporating ACO for feature selection, min-max scaling for data pre-processing, and Bayesian optimization for hyperparameter tweaking.
- MeSH
- Bayesova věta MeSH
- deep learning * MeSH
- diagnóza počítačová metody MeSH
- Formicidae MeSH
- kardiovaskulární nemoci * diagnóza MeSH
- lidé MeSH
- neuronové sítě * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: This paper introduces a fully automated, subject-specific deep-learning convolutional neural network (CNN) system for forecasting seizures using ambulatory intracranial EEG (iEEG). The system was tested on a hand-held device (Mayo Epilepsy Assist Device) in a pseudo-prospective mode using iEEG from four canines with naturally occurring epilepsy. APPROACH: The system was trained and tested on 75 seizures collected over 1608 d utilizing a genetic algorithm to optimize forecasting hyper-parameters (prediction horizon (PH), median filter window length, and probability threshold) for each subject-specific seizure forecasting model. The trained CNN models were deployed on a hand-held tablet computer and tested on testing iEEG datasets from four canines. The results from the iEEG testing datasets were compared with Monte Carlo simulations using a Poisson random predictor with equal time in warning to evaluate seizure forecasting performance. MAIN RESULTS: The results show the CNN models forecasted seizures at rates significantly above chance in all four dogs (p < 0.01, with mean 0.79 sensitivity and 18% time in warning). The deep learning method presented here surpassed the performance of previously reported methods using computationally expensive features with standard machine learning methods like logistic regression and support vector machine classifiers. SIGNIFICANCE: Our findings principally support the feasibility of deploying trained CNN models on a hand-held computational device (Mayo Epilepsy Assist Device) that analyzes streaming iEEG data for real-time seizure forecasting.
OBJECTIVES: The detection and classification of oral mucosal lesions is a challenging task due to high heterogeneity and overlap in clinical appearance. Nevertheless, differentiating benign from potentially malignant lesions is essential for appropriate management. This study evaluated whether a deep learning model trained to discriminate 11 classes of oral mucosal lesions could exceed the performance of general dentists. METHODS: 4079 intraoral photographs of benign, potentially malignant and malignant oral lesions were labeled using bounding boxes and classified into 11 classes. The data were split 80:20 for training (n = 3031) and validation (n = 766), keeping an independent test set (n = 282). The YOLOv8 computer vision model was implemented for image classification and object detection. Model performance was evaluated on the test set which was also assessed by six general dentists and three specialists in oral surgery. Evaluation metrics included sensitivity, specificity, F1-score, precision, area under the receiver operating characteristic curve (AUROC), and average precision (AP) at multiple thresholds of intersection over union. RESULTS: In terms of classification, the highest F1-score (0.80) and AUROC (0.96) were observed for human papillomavirus (HPV)-related lesions, whereas the lowest F1-score (0.43) and AUROC (0.78) were obtained for keratosis. In terms of object detection, the best results were achieved for HPV-related lesions (AP25 = 0.82) and proliferative verrucous leukoplakia (AP25 = 0.80; AP50 = 0.76), while the lowest values were noted for leukoplakia (AP25 = 0.36; AP50 = 0.20). Overall, the model performed comparable to specialists (p = 0.93) and significantly better than general dentists (p < 0.01). CONCLUSION: The developed model performed as well as specialists in oral surgery, highlighting its potential as a valuable tool for oral lesion assessment. CLINICAL SIGNIFICANCE: By providing performance comparable to oral surgeons and superior to general dentists, the developed multi-class model could support the clinical evaluation of oral lesions, potentially enabling earlier diagnosis of potentially malignant disorders, enhancing patient management and improving patient prognosis.
- MeSH
- deep learning MeSH
- lidé MeSH
- nádory úst * klasifikace diagnóza patologie diagnostické zobrazování MeSH
- nemoci úst * klasifikace diagnóza MeSH
- orální leukoplakie MeSH
- ROC křivka MeSH
- senzitivita a specificita MeSH
- strojové učení * MeSH
- ústní sliznice * patologie diagnostické zobrazování MeSH
- zubní lékaři * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Pancreatic ductal adenocarcinoma (PDAC), the most deadly solid malignancy, is typically detected late and at an inoperable stage. Early or incidental detection is associated with prolonged survival, but screening asymptomatic individuals for PDAC using a single test remains unfeasible due to the low prevalence and potential harms of false positives. Non-contrast computed tomography (CT), routinely performed for clinical indications, offers the potential for large-scale screening, however, identification of PDAC using non-contrast CT has long been considered impossible. Here, we develop a deep learning approach, pancreatic cancer detection with artificial intelligence (PANDA), that can detect and classify pancreatic lesions with high accuracy via non-contrast CT. PANDA is trained on a dataset of 3,208 patients from a single center. PANDA achieves an area under the receiver operating characteristic curve (AUC) of 0.986-0.996 for lesion detection in a multicenter validation involving 6,239 patients across 10 centers, outperforms the mean radiologist performance by 34.1% in sensitivity and 6.3% in specificity for PDAC identification, and achieves a sensitivity of 92.9% and specificity of 99.9% for lesion detection in a real-world multi-scenario validation consisting of 20,530 consecutive patients. Notably, PANDA utilized with non-contrast CT shows non-inferiority to radiology reports (using contrast-enhanced CT) in the differentiation of common pancreatic lesion subtypes. PANDA could potentially serve as a new tool for large-scale pancreatic cancer screening.
- MeSH
- deep learning * MeSH
- duktální karcinom slinivky břišní * diagnostické zobrazování patologie MeSH
- lidé MeSH
- nádory slinivky břišní * diagnostické zobrazování patologie MeSH
- pankreas diagnostické zobrazování patologie MeSH
- počítačová rentgenová tomografie MeSH
- retrospektivní studie MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH